

# Inverter/charger User Manual



UP1000/UP1500 UP2000/UP3000 UP5000

## CONTENTS

| Important Safety Instructions         | 1  |
|---------------------------------------|----|
| Disclaimers                           | 2  |
| 1. General Information                | 3  |
| 1.1 Overview                          | 3  |
| 1.2 Characteristics                   | 4  |
| 1.3 Designations of models            | 5  |
| 1.4 Schematic Diagram for Connections | 6  |
| 2. Installation Instructions          | 7  |
| 2.1 General Installation Notes        | 7  |
| 2.2 Wire Size& breaker                | 7  |
| 2.3 Mounting                          | 9  |
| 3. Interface Instruction              | 13 |
| 3.1 Indicator                         | 13 |
| 3.2 Buttons                           | 14 |
| 3.3 Real-time interface               | 14 |
| 3.4 Setting interface                 | 17 |
| 3.5 Other function                    | 19 |
| 4. Protection                         | 21 |
| 5. Troubleshooting                    | 22 |
| 5.1 Fault                             | 22 |
| 5.2 Troubleshooting                   | 22 |
| 6. Maintenance                        | 23 |
| 7. Technical Specifications           | 24 |

## **Important Safety Instructions**

Please reserve this manual for future review. This manual contains all instructions about safety, installation, and operation for the inverter/charger.

- > Read all the instructions and warnings carefully in the manual before installation.
- Non-safety voltage exists inside the inverter/charger; users must not dismantle it by themself, contact professional maintenance personnel of our company for maintenance.
- Keep the inverter/charger out the reach of children.
- The inverter/charger is for indoor installation only. Do not install the inverter/charger in a harsh environment such as humid, salt spray, corrosion, greasy, flammable, explosive, or dust accumulative.
- > The utility input and AC output have high voltage; please don't touch wire connections.
- Install the inverter/charger in well-ventilated places. Its shell may produce heat during operation.
- > It is suggested to install appropriate external fuses/breakers.
- Make sure to switch off all connections with the PV array and the fuse/breakers close to the battery before inverter/charger installation and adjustment.
- Make sure all connections remain tight to avoid excessive heat from a loose connection.
- It's an off-grid inverter/charger, not for an on-grid system.
- This inverter/charger can only be used singly. Parallel or series connections will damage the devices.
- The AC output port is only connected to the load. Therefore, it is strictly forbidden to connect other power sources or utilities. Otherwise, the damage will be caused to the inverter/charger. Also, turn off the inverter/charger before any installation.
- It is strictly forbidden to connect a transformer or a load with a surge power (VA) exceeding the overload power at the AC output port. Otherwise, the damage will be caused to the inverter/charger.

**Explanation of symbols:** To enable users to use the product efficiently and ensure personal and property safety, please read related literature accompanying the following symbols.

TIPs: Indicates any practical advice for reference.

**IMPORTANT:** Indicates a critical tip during the operation, if ignored, may cause the device to

run in error.

**CAUTION:** Indicates potential hazards, if not avoided, may cause the device damaged.

WARNING: Indicates the danger of electric shock, if not avoided, would cause casualties.

WARNING HOT SURFACE: Indicates the risk of high temperature, if not avoided, would

cause scalds.

Read the user manual carefully before any operation.

## Disclaimers

#### The warranty does not apply to the following conditions:

- Damage is caused by improper use or an inappropriate environment (such as the humid, salt spray, corrosion, greasy, flammable, explosive, dust accumulative, or other severe environments).
- > The actual current/voltage/power exceeds the limit value of the inverter/charger.
- > Damage caused by working temperature exceeds the rated range.
- Arc, fire, explosion, and other accidents are caused by failure to follow the inverter/charger stickers or manual instructions.
- > Disassemble and repair the inverter/charger without authorization.
- > Damage is caused by force majeure.
- > Damage occurred during transportation or handling.

## **1. General Information**

## 1.1 Overview

UPower is a new energy storage inverter/charger that integrates utility charging, solar charging, and AC output. The high-performance multi-core chip in the product with the advanced control algorithm brings intelligent management of the system.

As a reliable industrial standard equipment, UPower has quick response speed and excellent high transfer efficiency.

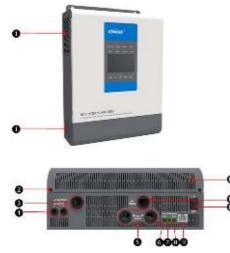
Intelligent adjustment of total charging current from both solar and utility, automatic adjustment is realized via different working modes selection, which ensures to provide power energy supply maximally.

The PV charging module adopts the up-to-date optimized MPPT tracking technology; it can quickly track the PV array's maximum power point in any environment. The MPPT tracking speed and energy transfer efficiency are quite high. The PV and AC charge current can be adjusted manually, which can meet the total charge current limit function. PV & utility charge current ratio distribution. Full electronic protection functions are available.

With a fully digital double closed-loop control, the AC-DC charging unit has extremely high response speed and stability. A wide AC input voltage and charge current limitation can be set. This module has complete protection functions at input and output.

The DC-AC inverter module is based on full digital and intelligent design. It adopts the advanced SPWM technology, outputs the pure sine wave, and converts 24/48VDC to 220/230VAC, suitable for AC loads of household appliances, electric tools, commercial units, electronic audio, and video devices, etc.

With the Utility by-pass charging function, the utility module can provide a power supply to load directly and charge the battery simultaneously. Under utility charge status, the user can choose by-pass mode or inverter output mode. UPower series provides multiple power supply modes, such as solar and utility, to maximize the use of green energy while ensuring electricity supply.


The display module is key for communication. The 4.2 inch LCD presents system status and real-time data; the user can set work parameters easily by four buttons.

#### Features:

- · Full intelligent digital energy storage equipment
- · Adjustment function of Utility & Solar charging ratio to meet various applications
- Advanced MPPT tracking technology, Max. tracking efficiency 99.5 %, Max. conversion efficiency 98.5 %
- Advanced all-digital control AC-DC charging modules to realize wide voltage input, high efficiency, and high stability
- Advanced SPWM technology to ensure maximum efficiency up to 95  $\%^{^{(j)}}$  , and full load efficiency up to 93 %  $^{^{(j)}}$
- High output voltage stability: when full load working in the working voltage range of battery, output voltage
- 220V/230V±5%②, frequency 50/60±0.1 Hz; voltage& frequency optional
- Advanced voltage, current, and power multi-loop control makes the DC-AC unit has good dynamic response capability, high resistance to surge power, and high operational reliability
- · With the function of Utility & Solar charging ratio selection, and total charging current setting
- · Four charging modes: Utility priority, Solar priority, Utility & Solar and Solar only

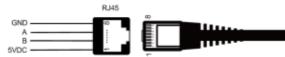
- · Two output modes: Battery and Utility
- Utility charging and inverter output can work at the same time, which avoids the impact of the unstable Utility voltage on the load
- · Rich set of options: charging current, battery type, battery voltage threshold, etc
- AC output one-key control, which can switch Utility or inverter output on and of, keeping the
  output of mode can make it convenient while wiring and maintaining on electric-distributions,
  reducing the standby loss
- · Support cold start and soft start
- RS485 isolated communication interface with 5V 200mA output, it is easy to access communication devices such as WIFI module
- PC or mobile phone APP can be used for remote monitoring, management, and setting to meet various remote use of users
- · Optional backlight and buzzer warning selection via PC software
- · With PV reverse polarity, Charging power limit, short circuit, battery reverse polarity protection
- With Utility input/AC output over-voltage, battery low voltage, power limit, over-current, and short circuit protections
- · With battery low/over voltage protection and temperature compensation etc
- · With internal over-temperature protection and intelligent start-stop function of the fan
- · A variety of accessories can be selected according to the user's requirements
- UP1500 and above models: testing result under 25°C environment temperature, rated input voltage, and resistive load
- (2) In battery discharging mode Output tolerance is 220V ±5% or 230V -10%~+5% for 24V and 48V input; and 220V -6%~+5% or 230V -10%~+5% with 12V battery input

## **1.2 Characteristics**



| 1 | Ventilation             | 0 | Dry contact interface       |
|---|-------------------------|---|-----------------------------|
| 2 | M4 Screw (2 pcs)        | 8 | Remote interface            |
| 3 | AC output terminals     | 9 | RS485 interface(5VDC/200mA) |
| 4 | Utility input terminals | 0 | Inverter/charger switch     |
| 6 | Battery input terminals | 0 | PV input terminals          |
| 6 | RTS* interface          | ß | Terminals cover             |

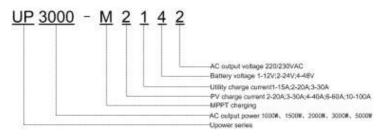


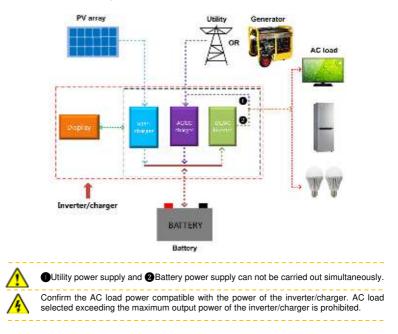

## **Temperature Sensor**

(Model:RT-MF58R47K3.81A)



 $\star$  Connect the temperature sensor, the inverter/charger is compensated according to the ambient temperature.


## RS485 Interface




### RJ45 interface pin define is shown below:

| Pins | Define   | Pins | Define   |
|------|----------|------|----------|
| 1    | 5VDC     | 5    | RS-485-A |
| 2    | 5VDC     | 6    | RS-485-A |
| 3    | RS-485-B | 7    | GND      |
| 4    | RS-485-B | 8    | GND      |

## 1.3 Designations of models





## **1.4 Schematic Diagram for Connections**

## 2. Installation Instructions

## 2.1 General Installation Notes

- Please read the entire installation instructions to get familiar with the installation steps before installation.
- Be very careful when installing the batteries, especially flooded lead-acid batteries. Please
  wear eye protection, and have fresh water available to wash and clean if any battery acid
  contact.
- Keep the battery away from any metal objects, which may cause a short circuit of the battery.
- Explosive acid battery gases may come out from the battery during charging, so make sure ventilation condition is good.
- Ventilation is highly recommended if mounted in an enclosure. Never install the inverter/charger in a sealed enclosure with flooded batteries! Battery fumes from vented batteries will corrode and destroy the inverter/charger circuits.
- The lead-acid battery is only recommended. For other kinds, please refer to the battery manufacturer.
- Loose connections and corroded wires may result in high heat that can melt wire insulation, burn surrounding materials, or even cause a fire. Ensure tight connections and use cable clamps to secure cables and prevent them from swaying in motion.
- Select the system cables according to 5A/mm<sup>2</sup> or less current density following Article 690 of the National Electrical Code, NFPA 70.
- The inverter/charger is for indoor installation only. Do not install the inverter/charger in a harsh environment such as humid, salt spray, corrosion, greasy, flammable, explosive, or dust accumulative.
- High voltage still exists inside the inverter/charger after switching off the power switch. Do not turn on or touch the internal units and conduct the associated operation only after discharging the electric capacity.
- Do not place the inverter/charger in a damp, oily, inflammable, and explosive or severe environment with a large amount of dust accumulation.
- Prohibit reverse connection at DC input end; otherwise, it may damage the equipment, or unpredictable danger will occur.
- The utility input and AC output are of high voltage, do not touch the wire connection.

## 2.2 Wire Size& breaker

The wiring and installation methods must follow all national and local electrical code requirements.

| Model         | PV wire size            | Breaker |
|---------------|-------------------------|---------|
| UP1000-M3212  | 10mm <sup>2</sup> /8AWG | 2P—63A  |
| UP1000-M3222  | 10mm <sup>2</sup> /8AWG | 2P—63A  |
| UP1500-M3222  | 10mm <sup>2</sup> /8AWG | 2P—63A  |
| UP2000-M3322  | 10mm <sup>2</sup> /8AWG | 2P—63A  |
| UP3000-M3322  | 10mm <sup>2</sup> /8AWG | 2P—63A  |
| UP3000-M6322  | 16mm <sup>2</sup> /5AWG | 2P—100A |
| UP3000-M2142  | 6mm <sup>2</sup> /10AWG | 2P—32A  |
| UP3000-M6142  | 16mm <sup>2</sup> /5AWG | 2P—100A |
| UP5000-M6342  | 16mm <sup>2</sup> /5AWG | 2P—100A |
| UP5000-M8342  | 25mm <sup>2</sup> /4AWG | 2P—125A |
| UP5000-M10342 | 25mm <sup>2</sup> /4AWG | 2P—125A |

> Recommended wire and circuit breaker of PV

**NOTE:** When the PV modules are connected in series, the PV array's open-circuit voltage must not exceed the max. PV input voltage at 25°C environment temperature.

### Recommended wire of Utility

| Model         | Utility wire size         |  |  |
|---------------|---------------------------|--|--|
| UP1000-M3212  | 2.5mm <sup>2</sup> /14AWG |  |  |
| UP1000-M3222  | 2.5mm <sup>2</sup> /14AWG |  |  |
| UP1500-M3222  | 2.5mm <sup>2</sup> /14AWG |  |  |
| UP2000-M3322  | 4mm <sup>2</sup> /12AWG   |  |  |
| UP3000-M3322  | 6mm <sup>2</sup> /10AWG   |  |  |
| UP3000-M6322  | 6mm <sup>2</sup> /10AWG   |  |  |
| UP3000-M2142  | 6mm <sup>2</sup> /10AWG   |  |  |
| UP3000-M6142  | 6mm²/10AWG                |  |  |
| UP5000-M6342  | 10mm <sup>2</sup> /8AWG   |  |  |
| UP5000-M8342  | 10mm²/8AWG                |  |  |
| UP5000-M10342 | 10mm <sup>2</sup> /8AWG   |  |  |

NOTE: The utility input has the circuit breaker already, and there is no need to add any more.

### > Recommended wire and circuit breaker of battery

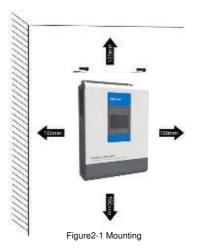
| Model        | Battery wire size       | Breaker |
|--------------|-------------------------|---------|
| UP1000-M3212 | 16mm <sup>2</sup> /6AWG | 2P—100A |
| UP1000-M3222 | 16mm <sup>2</sup> /6AWG | 2P—100A |
| UP1500-M3222 | 16mm²/6AWG              | 2P—100A |
| UP2000-M3322 | 25mm <sup>2</sup> /4AWG | 2P—125A |
| UP3000-M3322 | 35mm²/2AWG              | 2P—200A |
| UP3000-M6322 | 35mm²/2AWG              | 2P—200A |
| UP3000-M2142 | 16mm²/6AWG              | 2P—100A |
| UP3000-M6142 | 16mm <sup>2</sup> /6AWG | 2P—100A |
| UP5000-M6342 | 35mm²/2AWG              | 2P—200A |

| UP5000-M8342  | 35mm²/2AWG              | 2P—200A |
|---------------|-------------------------|---------|
| UP5000-M10342 | 35mm <sup>2</sup> /2AWG | 2P—200A |

**NOTE:** Type of circuit breaker is selected based on the inverter's non-independent connection at the battery end where there is no anther inverter connected.

### > Recommended wire and circuit breaker for AC output

| Model         | AC wire size              | Breaker |
|---------------|---------------------------|---------|
| UP1000-M3212  | 2.5mm <sup>2</sup> /14AWG | 2P—10A  |
| UP1000-M3222  | 2.5mm <sup>2</sup> /14AWG | 2P—10A  |
| UP1500-M3222  | 2.5mm <sup>2</sup> /14AWG | 2P—10A  |
| UP2000-M3322  | 2.5mm <sup>2</sup> /14AWG | 2P—16A  |
| UP3000-M3322  | 4mm <sup>2</sup> /12AWG   | 2P—25A  |
| UP3000-M6322  | 4mm <sup>2</sup> /12AWG   | 2P—25A  |
| UP3000-M2142  | 4mm <sup>2</sup> /12AWG   | 2P—25A  |
| UP3000-M6142  | 4mm <sup>2</sup> /12AWG   | 2P—25A  |
| UP5000-M6342  | 6mm <sup>2</sup> /10AWG   | 2P—40A  |
| UP5000-M8342  | 6mm <sup>2</sup> /10AWG   | 2P—40A  |
| UP5000-M10342 | 6mm <sup>2</sup> /10AWG   | 2P—40A  |




 The wire size is only for reference. Suppose a long-distance exists between the PV array and the inverter/charger or between the inverter/charger and the battery. In that case, larger wires shall be used to reduce the voltage drop and improve the system performance.

• The above wire and the circuit breaker size are recommended only; please choose the appropriate wire and circuit breaker according to the practical situation.

NOTE: The cable lugs refer to the cardboard in the package.

## 2.3 Mounting



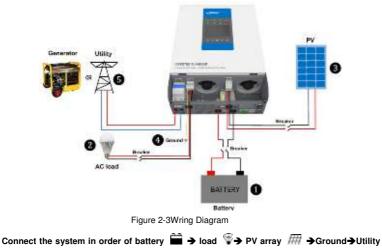
#### Installation steps:

#### Step1: Determination of Installation Location and heat-dissipation Space

When installing the inverter/charger, ensure enough air flowing through the heat sink. Please leave at least 150mm clearance away from the upper and lower edges. Please see Figure 2-1: Mounting.



#### WARNING: Risk of explosion!


Never install the inverter/charger with flooded batteries in a sealed enclosure! Do not install the device in a confined area where battery gas can accumulate.

Step 2: Take down the terminal protective cover



Figure2-2 Take down the cover





## $\overline{\mathbb{A}}$ following Figure 2-3: Wiring Diagram. Disconnect the system in reverse order.



- Danger, High-voltage! Utility input, AC output, and PV array will produce dangerous voltage. Ensure to disconnect the circuit breaker/ fuse before wiring.
- Do not turn on the circuit breaker/ fuse when wiring, and at the same time, ensure that the poles' wirings are correctly connected.
- A circuit breaker must be installed at the battery end. For selection, refer to Section 2.3, "Wire and Circuit Breaker."



If the inverter/charger is to be used in an area with frequent lightning strikes, installing an external surge arrester at the PV input is recommended.

#### Grounding

A grounding connection must be made when the utility is connected to the inverter/charger. The inverter/charger has a dedicated grounding terminal, as shown in Fig. 2-3, and the grounding must be reliable. The grounding wire has to stay consistent with Recommended wire for AC output. The grounding point shall be as close as possible to the inverter/charger; the grounding wire shall be as short as possible.

#### AC output, Ground, and PV wiring terminal use way:

① When wiring, do not close the circuit breaker. It is necessary to use a slotted screwdriver to unscrew the screws for connecting their corresponding wires.

② When removing the wirings, first the integrated machine must stop working. Then the screws shall be unscrewed by using a slotted screwdriver to dismantle their corresponding wires.

#### Step 4: Install the terminal protective cover

#### Step 5: Connect accessory

· Connect the remote temperature sensor cable (model: RTS300R47K3.81A)

Connect one end of the remote temperature sensor cable to the interface (6) and place the other end close to the battery.

Connect the temperature sensor, the inverter/charger is compensated according to the ambient temperature.

- · Connect the remote temperature sensor cable (model: RTS300R47K3.81A)
- Connect the accessories, monitor the system status, and set the parameters via PC software or APP software.



(1)PC software <u>www.epever.com</u>-Inverter Monitor(UP) (2)Mobile APP software (Android) <u>www.epever.com</u>-UPower

### Step 6: Recheck if the wire connection is correct

#### Step 7: Power on the inverter/charger

①Connect the circuit breaker at the battery end.

2)Turn on the switch, then the inverter indicator is on.

③Turn on the breaker of PV array and Utility.

(4) Turn on the AC load when the AC output is normal.



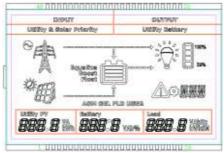
 When supplying power for different AC loads, it is recommended to turn on the load with a large impulse current. And then turn on the load with a smaller impulse current after the load output is stable.

 If the inverter/charger is not operating properly or the LCD or the indicator shows an abnormality, please refer to 5 "Troubleshooting" or contact our after-sales personnel

NOTE: The installation steps and accessory list also refer to the cardboard in the package.

## 3. Interface Instruction

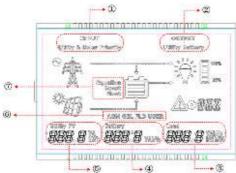
## 3.1 Indicator




| Indicator      | Color | Status                 | Instruction                                  |
|----------------|-------|------------------------|----------------------------------------------|
|                |       | OFF                    | No utility input                             |
| 0              | Green | On Solid               | Utility connection normal but no<br>charging |
| Utility Charge | Green | Slowly Flashing(0.5Hz) | Utility charging                             |
|                |       | Fast Flashing(2.5Hz)   | Utility charge module fault                  |
|                |       | OFF                    | No PV input                                  |
| 0              | Green | On Solid               | PV connection normal but no<br>charging      |
| PV Charge      | Creen | Slowly Flashing(0.5Hz) | PV charging                                  |
|                |       | Fast Flashing(2.5Hz)   | PV charge module fault                       |
|                |       | OFF                    | Inverter turns off                           |
|                | Green | On Solid               | Inverter turns on<br>By-pass                 |
| Inverter       |       | Slowly Flashing(0.5Hz) | Inverter output                              |
|                |       | Fast Flashing(2.5Hz)   | Inverter fault                               |
|                | 0     | OFF                    | No-load output                               |
| Load           | Green | On Solid               | Load output                                  |
| 0              |       | OFF                    | Dry contact turns off                        |
| Relay          | Green | On Solid               | Dry contact turns on                         |
|                |       | OFF                    | Input voltage(3.3~12VDC)                     |
| Green          |       | On Solid               | No Input voltage                             |
|                | 0     | OFF                    | Inverter output                              |
| Bypass         | Green | Slowly Flashing(0.5Hz) | Utility output                               |
|                |       | OFF                    | Device normal                                |
| Fault          | Red   | On Solid               | Device fault                                 |

## 3.2 Buttons

| Operation                       | Instruction                                                                |  |
|---------------------------------|----------------------------------------------------------------------------|--|
| Press the button                | Exit the current interface                                                 |  |
| Press the button and hold on 2s | Clear the faults                                                           |  |
|                                 | Browse interface: Up/Down                                                  |  |
| Press the / button              | Setting interface: Up/Down                                                 |  |
| Press the button                | Switch to "Browse Parameter Column"<br>Confirm the setting parameters      |  |
| (and                            | Switch the" Real-Time Interface" over to "Set<br>Browse Interface"         |  |
| Press the button and hold on 2s | Switch the "Set Browse Interface" over to<br>"Parameter Setting Interface" |  |
| Press the button and hold on 2s | Inverter ON/OFF                                                            |  |


## 3.3 Real-time interface

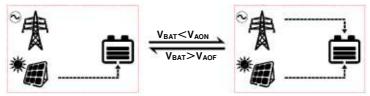


Note: The display screen can be viewed clearly when the angle between the end-user's horizontal sight and the display screen is within 90°. If the angle exceeds 90°, the information on the display screen cannot be viewed clearly.

| lcon | instruction                                              | lcon | instruction                                    |
|------|----------------------------------------------------------|------|------------------------------------------------|
| ~實   | Utility connecting and input                             | *    | PV connecting and input                        |
| 實    | No Utility connecting<br>Utility connecting but no input | , HE | No PV connecting<br>PV connecting but no input |

| ÷   | Load ON                 |      | Load OFF                 |
|-----|-------------------------|------|--------------------------|
| 25% | Load power 8 $\sim$ 25% | 25%  | Load power 25 $\sim$ 50% |
| 275 | Load power 50~75%       | 100% | Load power 75~100%       |



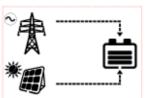

| Item | Setting      | Content                                                                                                                           |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
| nem  | octaing      | Solar priority                                                                                                                    |
| 1    | INPUT        | Utility priority<br>Utility & solar<br>Solar                                                                                      |
| 2    | OUTPUT       | Battery<br>Utility                                                                                                                |
| 3    | Load         | AC output voltage<br>AC output current<br>AC output power<br>AC output frequency                                                  |
| 4    | Battery      | Battery voltage<br>Max. charging current<br>(PV charging current+ Utility charging current)<br>Battery temperature<br>Battery SOC |
|      | PV           | PV input voltage<br>PV charging current<br>PV charging power<br>PV charge energy                                                  |
| \$   | Utility      | Utility input voltage<br>Utility charging current<br>Utility charging power<br>Utility charge energy                              |
| 6    | Battery Type | AGM<br>GEL<br>FLD                                                                                                                 |

|   |                        | USER                                                    |
|---|------------------------|---------------------------------------------------------|
| Ø | Battery charging stage | Float<br>Boost<br>Equalize(28 <sup>th</sup> each month) |

### 1 INPUT

★Solar priority(Default)

The battery is charged in solar priority mode. When the battery voltage is lower than "Auxiliary Module ON Voltage ( $V_{AON}$ )," the utility starts charging. When the battery voltage reaches "Auxiliary Module OFF Voltage ( $V_{AOF}$ )," the utility stops charging.




★Utility priority

The battery is charged in utility priority mode. When the battery voltage is lower than the "Auxiliary Module ON Voltage  $(V_{AON})$ ," the solar starts charging the battery. And when the battery voltage reaches the "Auxiliary Module OFF Voltage  $(V_{AOF})$ ," the solar stops charging.



★Utility &solar Utility &solar charge the battery



★Solar Solar charges the battery



② OUTPUT ★Battery



### +Utility(Default)



## 3.4 Setting interface

|         | OUTPUT<br>Battery | INPUT<br>Utility & Solar Priority |
|---------|-------------------|-----------------------------------|
|         | ¢L ND             |                                   |
| Setting | (42.21)           |                                   |

1) Common interface for common user

### **Operation:**

Step1: Press the button and hold on 2s at the real-time interface to go to the common interface.

Step2: Press the weithin and hold on 2s at the setting parameter interface and choose the

parameters. Step3: Press the

button to set the parameter, and press this button again for confirmation.

Step4: Press the

button to exit the setting interface.

### Setting:

| Item | LCD | Instruction            | Default        | Range                                                          |
|------|-----|------------------------|----------------|----------------------------------------------------------------|
| 1    | gtp | Battery type           | AGM            | AGM<br>GEL<br>FLD<br>USER                                      |
| 2    | CSP | Charge source priority | Solar priority | Solar priority<br>Utility priority<br>Utility & solar<br>Solar |
| 3    | OSP | Output source priority | Utility        | Battery<br>Utility                                             |

| 4 | TMU         | Temperature unit               | °C     | °C/°F                               |
|---|-------------|--------------------------------|--------|-------------------------------------|
| 5 | <u>EL</u> T | Backlight time                 | 30S    | 30S/60S/100S(Always-<br>on)         |
| 6 | E 4S        | Buzzer alarm switch            | ON     | ON/ OFF                             |
| 7 | LUI         | Low voltage disconnect voltage | 10.8V* | User 10.5~11.3V*<br>step size 0.1V* |
| 8 | ĿŴŖ         | Low voltage reconnect voltage  | 12.5V* | User 12.0~13.0V*<br>step size 0.1V* |

## ★The voltage parameter is at 25°C, 12V system, and twice in 24V system, quadruple in 48V system.



When the output mode is battery priority, the battery voltage is lower than the low-voltage disconnect voltage (adjustable). The system switch to the utility power supply for the load.

2) Advanced interface for engineers

### **Operation:**

Step1: Press the

Step2: Press the



button and hold on 2s under the real-time interface.

button and hold on 2s under the setting parameter interface.

Step3: Press the

button to enter the parameter.

Step4: Press the

button to exit the setting interface.

### Setting:

| Item | LCD  | Instruction                     | Default                                               | Range                                |
|------|------|---------------------------------|-------------------------------------------------------|--------------------------------------|
| 9    | RET  | Boost Charging Time             | 30min                                                 | 30/60/120/180min                     |
| 10   | BEN  | Boost Charging Voltage          | AGM:14.4V*<br>GEL:14.2V*<br>FLD:14.6V*<br>USER:14.4V* | User 12.5~14.8V*<br>Step size 0.1V*  |
| 11   | ß    | Boost Voltage Reconnect         | 13.2V*                                                | User: 12.5~14.0V*<br>Step size 0.1V* |
| 12   | FEN  | Float Charging Voltage          | 13.8V*                                                | User: 13.0~14.0V*<br>Step size 0.1V* |
| 13   | DNR  | Over Voltage Reconnect Voltage  | 15.0V*                                                | User: 14.5~15.5V*<br>Step size 0.1V* |
| 14   | 0VI  | Over Voltage Disconnect Voltage | 16.0V*                                                | User: 15.5~16.1V*<br>Step size 0.1V* |
| 15   | ,4⊡F | Auxiliary module OFF voltage    | 14.0V*                                                | User: 12.0~14.8V*                    |
| 16   | ,4ΩN | Auxiliary module ON voltage     | 12.0V*                                                | Step size 0.1V*                      |
| 17   | JON  | Dry contact ON voltage          | 11.1V*                                                | User: 10.8~12.0V*<br>Step size 0.1V* |
| 18   | JOF  | Dry contact OFF voltage         | 12.0V*                                                | User:12.0~13.25V*<br>Step size 0.1V* |
| 19   | MEE  | Max. charging current           | 60.0A <sup>+</sup>                                    | 15.0∼60.0A <sup>◆</sup>              |
| 20   | P511 | Power saving mode               | OFF                                                   | ON/OFF                               |

| 21 | EE A | Clear fault                  | OFF   | ON/OFF                               |
|----|------|------------------------------|-------|--------------------------------------|
| 22 | 901  | Clear the accumulated energy | OFF   | ON/OFF                               |
| 23 | TBE  | Total battery capacity       | 600AH | 100 $\sim$ 4000AH<br>Step size 100AH |
| 23 | 'YEB | Software version             | U-1.0 | —                                    |

★The voltage parameter is at 25°C, 12V system, and twice in 24V system, quadruple in 48V system.

## The following rules must be observed when modifying the parameter values in User for lead-acid battery.

**I**. Over Voltage Disconnect Voltage > Charging Limit Voltage ≥ Equalize Charging Voltage ≥ Boost Charging Voltage ≥ Float Charging Voltage > Boost Reconnect Charging Voltage.

I. Over Voltage Disconnect Voltage > Over Voltage Reconnect Voltage

**Ⅲ.** Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage.

IV. Under Voltage Warning Reconnect Voltage > Under Voltage Warning Voltage  $\geq$  Discharging Limit Voltage.

V. Boost Reconnect Charging voltage >Low Voltage Reconnect Voltage.

## ♦For the inverter/charger of different power, the current setting range is not the same; see Technical Parameters for details.

### NOTE:

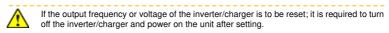
#### 15/16: Stop/restore auxiliary module charging voltage

Only when the charging mode is Solar priority or Utility priority will the auxiliary module charging voltage be effective.

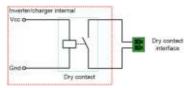
#### 20: Power saving mode

When the switch is on the "Saving" side, the inverter will enter into the Saving Mode. It will shut off the output if the load value is less the 70W. Then restart and detect the power of the load again after 10s. If the load is more than 70W, the inverter will turn on the output. Otherwise, it will shut off output. It cycles like this. So please don't use the saving mode if the load is smaller than 70W.

#### 21: Clear the faults


In a short circuit or overload caused to AC output, the fault can be cleared out.

## 3.5 Other function


### 1) Output voltage & frequency switch

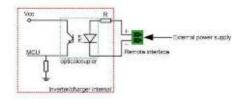


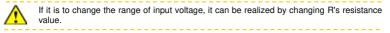
- When Switch 1 is in "ON," the output voltage is selected as 230VAC, and on the contrary as 220VAC;
- When Switch 2 is in "ON," the output frequency is selected as 60Hz, and on the contrary, like 50Hz.



#### 2) Dry contact interface




**Working principle:** When the battery voltage reaches the dry contact ON voltage (DON), the dry contact is connected, for its coil is energized. The dry contact can drive resistive loads of no more than 125VAC /1A, 30VDC/1A.


#### 3) Remote interface

#### Remote interface input voltage (3.3~12V)

(1)The input voltage Vi is within 2.5~ 10s, the AC output state is reversed (when the AC is formerly in the output state, now it is in the no-output state; when the AC is formerly in the no-output state, now it is in output state;)

(2) The input voltage Vi is greater than 10s; the AC is in the output state all the time till the input voltage Vi disappears.





## 4. Protection

| Protection                                                         | Instruction                                                                                                       |                                                                                   |                              |                             |                          |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------|-----------------------------|--------------------------|--|--|
|                                                                    | When the charging                                                                                                 | current of the PV array e                                                         | xceeds its rated current, it | will be charged at the rat  | ed current.              |  |  |
| PV limit Current                                                   | NOTE: When the                                                                                                    | PV modules are in series                                                          | s, ensure that the PV arr    | ay's open-circuit voltag    | e does not exceed the    |  |  |
|                                                                    | "maximum PV op                                                                                                    | en-circuit voltage." Othe                                                         | erwise, the inverter/charg   | ger may be damaged.         |                          |  |  |
| PV short circuit                                                   | When PV is not ch                                                                                                 | arging and short circuit, th                                                      | e inverter/charger is not d  | amaged.                     |                          |  |  |
|                                                                    | Fully protect again                                                                                               | st PV reverse polarity, co                                                        | rrect the wire connection t  | o resume normal operatio    | n.                       |  |  |
| PV Reverse Polarity                                                | NOTE: The inver                                                                                                   | ter/charger will be dam                                                           | aged when the PV arra        | y straight polarity and     | the PV array's actual    |  |  |
| operating power are 1.5 times greater than the rated charge power! |                                                                                                                   |                                                                                   |                              |                             |                          |  |  |
| Night Reverse Charging                                             | Prevent the battery from discharging through the PV module at night.                                              |                                                                                   |                              |                             |                          |  |  |
| Utility input overvoltage                                          | When the utility vo                                                                                               | When the utility voltage exceeds 280V, it will stop utility charging/discharging. |                              |                             |                          |  |  |
| Utility input under-voltage                                        | When the utility voltage is less than 160V, it will stop utility charging/discharging.                            |                                                                                   |                              |                             |                          |  |  |
| Dettern even altere                                                | When the battery voltage reaches the set point of Over Voltage Disconnect Voltage, the inverter/charger will stop |                                                                                   |                              |                             |                          |  |  |
| Battery overvoltage                                                | charging the batte                                                                                                | ry to protect the battery fro                                                     | om being overcharged to b    | oreak down.                 |                          |  |  |
| Dettern Over Discharge                                             | When the battery voltage reaches the Low Voltage Disconnect Voltage set point, the inverter/charger will stop     |                                                                                   |                              |                             |                          |  |  |
| Battery Over Discharge                                             | discharging the ba                                                                                                | attery to protect the battery                                                     | from being over-discharg     | ed to break down.           |                          |  |  |
| Lood autout Chart Circuit                                          | It will immediately                                                                                               | close the output in the occ                                                       | urrence of a short-circuit.  | Hereafter the output is au  | tomatically recovered in |  |  |
| Load output Short Circuit                                          | time delay (the first                                                                                             | t time delay for 5s, the sec                                                      | cond time delay for 10s, th  | e third time delay for 15s) |                          |  |  |
|                                                                    | Overload                                                                                                          | 1.2                                                                               | 1.5                          | 1.8                         | 2.0                      |  |  |
| Load output Overload                                               | Continuance                                                                                                       | 15min.                                                                            | 30S                          | 10S                         | 5S                       |  |  |
|                                                                    | Recover 3 times                                                                                                   | The first time del                                                                | ay for 5s, the second time   | delay for 10s, the third ti | me delay for 15s         |  |  |
| Device and the stine                                               | The inverter/charg                                                                                                | er will stop charging/dis                                                         | scharging when the inte      | rnal temperature is too     | high and will restore    |  |  |
| Device overheating                                                 | charging/dischargi                                                                                                | ng when the temperature i                                                         | s recovered to normal.       |                             |                          |  |  |

## 5. Troubleshooting

## 5.1 Fault

| Module             | Code | Fault                                       | battery<br>frame<br>blink | indicator         | Buzzer | Fault indicator |
|--------------------|------|---------------------------------------------|---------------------------|-------------------|--------|-----------------|
|                    | 8L V | Battery low voltage                         |                           |                   | _      | —               |
| Battery            | 20%  | Battery over voltage                        |                           |                   |        |                 |
|                    | 201  | Battery over-discharge                      | Flashing                  | —                 |        |                 |
|                    | NHE  | Nominal voltage error                       |                           |                   |        |                 |
|                    | LTP  | Low temperature                             |                           |                   |        |                 |
| PV<br>charging     | DTP  | Over-temperature<br>(PV charge module)      |                           | PV charge<br>Fast |        |                 |
| module             | EFA  | Communication Fault<br>Alarm                | t Flashing                |                   |        |                 |
|                    | IΟV  | Input overvoltage                           |                           |                   | Alarm  | On<br>Solid     |
| Utility            | ILV  | Input low voltage                           |                           | Utility           |        |                 |
| charging<br>module | DTP  | over temperature<br>(Utility charge module) |                           | Fast<br>Flashing  |        |                 |
|                    | EFA  | Communication Fault<br>Alarm                | —                         | <b></b>           |        |                 |
|                    | 014  | Output voltage<br>abnormal                  |                           |                   |        |                 |
| Inverter           | DSC  | Output short circuit                        |                           | inverter          |        |                 |
| output             | 00   | Output overload                             |                           | Fast              |        |                 |
| module             | OTP  | Over-temperature                            |                           | Flashing          |        |                 |
|                    | EF A | Communication fault alarm                   |                           |                   |        |                 |

## 5.2 Troubleshooting

| Fault                  | Troubleshooting                                                                                                                                                                                            |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Battery over voltage   | Check if battery voltage too high, and disconnect solar modules.                                                                                                                                           |  |  |
| Battery over-discharge | When the battery voltage resume to or above LVR point (low voltage reconnect voltage), or change the battery by other ways                                                                                 |  |  |
| Battery overheating    | The inverter/charger will automatically turn the system off. But while the<br>battery temperature declines to be below overheating recovery<br>temperature value, the inverter/charger will work normally. |  |  |
| Device overheating     | The inverter/charger will automatically turn the system off. But while the<br>device temperature declines to be below overheating recovery<br>temperature value, the inverter/charger will work normally.  |  |  |
| Output overload        | ①Please reduce the number of AC loads.<br>②Restart the device or CFA of setting interface change to ON.                                                                                                    |  |  |
| Output short circuit   | ①Check carefully loads connection, clear the fault.<br>②Restart the device CFA of setting interface change to ON.                                                                                          |  |  |

## 6. Maintenance

The following inspections and maintenance tasks are recommended at least two times per vear for the best performance.

- Make sure the inverter/charger is firmly installed in a clean and dry ambient.
- Make sure no block on airflow around the inverter/charger. Clear up any dirt and fragments on the radiator.
- Check all the naked wires to ensure insulation is not damaged for serious solarization, frictional wear, dryness, insects or rats, etc. Repair or replace some wires if necessary.
- Tighten all the terminals. Inspect for loose, broken, or burnt wire connections.
- Check and confirm that LED or LCD is consistent with the actual operating. Pay attention to
   any troubleshooting or error indication. Then, take the necessary corrective action.
- · Confirm that all the system components are ground connected tightly and correctly.
- Confirm that all the terminals have no corrosion, insulation damaged, high temperature, or burnt/discolored sign. Then, tighten terminal screws to the suggested torque.
- Check for dirt, nesting insects, and corrosion. If so, clear up in time.
- Check and confirm the lightning arrester is in good condition. Replace a new one in time to

avoid damaging the inverter/charger and even other equipment.



#### WARNING: Risk of electric shock!

Ensure that all the power is turned off before the above operations, and then follow the corresponding inspections and operations.

## 7. Technical Specifications

| Item                        | UP1000-M3212                    | UP1000-M3222 | UP1500-M3222                           | UP2000-M3322        | UP3000-M3322 | UP3000-M6322      |  |
|-----------------------------|---------------------------------|--------------|----------------------------------------|---------------------|--------------|-------------------|--|
| Nominal battery voltage     | 12VDC                           |              |                                        | 24VDC               |              |                   |  |
| Battery input voltage range | 10.8~16VDC                      |              |                                        | 21.6~32VDC          |              |                   |  |
| Inverter output             |                                 |              |                                        |                     |              |                   |  |
| Continuous output power     | 800W                            | 800W         | 1200W                                  | 1600W               | 2400W        | 2400W             |  |
| Output power (15min.)       | 1000W                           | 1000W        | 1500W                                  | 2000W               | 3000W        | 3000W             |  |
| Overload power(5s)          | 1600W                           | 1600W        | 2400W                                  | 3200W               | 4800W        | 4800W             |  |
| Max. surge power            | 2000W                           | 2000W        | 3000W                                  | 4000W               | 6000W        | 6000W             |  |
| Output voltage range        | 220V(-6%~+5%)<br>230V(-10%~+5%) |              | 220VAC                                 | (±5%), 230VAC(-109  | %~+5%)       |                   |  |
| Output frequency            |                                 |              | 50/60 =                                | ±0.1Hz              |              |                   |  |
| Output mode                 |                                 | Single-phase |                                        |                     |              |                   |  |
| Output wave                 |                                 |              | Pure Sir                               | ne Wave             |              |                   |  |
| Load power factor           |                                 | 0.           | 2-1(Load power≤Co                      | ntinuous output pow | er)          |                   |  |
| Distortion THD              |                                 |              | ≤3%(12V or 24)                         | V resistive load)   | ·            |                   |  |
| Max. efficiency             | 91%                             | 94%          | 95%                                    | 95%                 | 95%          | 95%               |  |
| Transfer time               |                                 |              | 20mS(res                               | istive load)        |              |                   |  |
| Utility charging            |                                 |              | •                                      |                     |              |                   |  |
| Utility input voltage range |                                 |              | 160VAC~280VAC(W<br>0VAC~270VAC(Utility |                     |              |                   |  |
| Max. utility charge current | 20A                             | 20A          | 20A                                    | 30A                 | 30A          | 30A               |  |
| Solar charging              |                                 |              |                                        |                     |              |                   |  |
| Max. PV open circuit        | 60V*                            |              | 100                                    | )V*                 |              | 150V*             |  |
| voltage                     | 46V <sup>◆</sup>                |              | 92                                     | .V <sup>◆</sup>     |              | 138V <sup>+</sup> |  |
| Max. PV input power         | 390W                            | 780W         | 780W                                   | 780W                | 780W         | 1500W             |  |
| Max. PV charging current    | 30A                             | 30A          | 30A                                    | 30A                 | 30A          | 60A               |  |
| Equalization voltage        | 14.6V                           | 29.2V        |                                        |                     |              |                   |  |
| Boost voltage               | 14.4V                           |              |                                        | 28.8V               |              |                   |  |
| Float voltage               | 13.8V                           |              |                                        | 27.6V               |              |                   |  |

| Tracking efficiency                   | ≤99.5%                                    |                               |                        |                       |                  |        |  |
|---------------------------------------|-------------------------------------------|-------------------------------|------------------------|-----------------------|------------------|--------|--|
| Charging conversion<br>efficiency     | ≤98%                                      |                               |                        |                       |                  |        |  |
| Temperature<br>compensate coefficient | -3mV/°C/2V (Default)                      |                               |                        |                       |                  |        |  |
| Others                                |                                           |                               |                        |                       |                  |        |  |
| No load consumption                   | ≤1.2A                                     | ≤1.2A ≤0.6A ≤0.8A ≤0.8A ≤0.8A |                        |                       |                  |        |  |
| Enclosure                             |                                           |                               | IP                     | 30                    |                  |        |  |
| Relative humidity                     |                                           |                               | < 95%                  | (N.C.)                |                  |        |  |
| Environment temperature               |                                           | -20°C~                        | 50℃ (100% input ar     | nd output with no der | ating)           |        |  |
| Altitude                              |                                           | <5000m(Derating to            | o operate according to | IEC62040 at a heig    | ht exceeding 100 | 0m)    |  |
| Mechanical Parameters                 |                                           |                               |                        |                       |                  |        |  |
| Dimension(H x W x L)                  | 386×300×126mm 444×300×126mm 518×310×168mm |                               |                        |                       |                  |        |  |
| Mounting size                         | 230mm                                     |                               |                        |                       |                  |        |  |
| Mounting hole size                    | Ф8mm                                      |                               |                        |                       |                  |        |  |
| Weight                                | 7.3kg                                     | 7.3kg                         | 7.4kg                  | 8.5kg                 | 9.2kg            | 14.9kg |  |

### ★At minimum operating environment temperature

## ♦At 25°C environment temperature

| Item                        | UP3000-M2142                              | UP3000-M6142 | UP5000-M6342 | UP5000-M8342 | UP5000-M10342 |  |  |  |
|-----------------------------|-------------------------------------------|--------------|--------------|--------------|---------------|--|--|--|
| Nominal battery voltage     | 48VDC                                     |              |              |              |               |  |  |  |
| Battery input voltage range | 43.2~64VDC                                |              |              |              |               |  |  |  |
| Inverter output             |                                           |              |              |              |               |  |  |  |
| Continuous output power     | 2400W                                     | 2400W        | 4000W        | 4000W        | 4000W         |  |  |  |
| Output power (15min.)       | 3000W                                     | 3000W        | 5000W        | 5000W        | 5000W         |  |  |  |
| Overload power(5s)          | 4800W                                     | 4800W        | 8000W        | 8000W        | 8000W         |  |  |  |
| Max. surge power            | 6000W                                     | 6000W        | 10000W       | 10000W       | 10000W        |  |  |  |
| Output voltage range        | 220VAC(±5%), 230VAC(-10%~+5%)             |              |              |              |               |  |  |  |
| Output frequency            | 50/60±0.1Hz                               |              |              |              |               |  |  |  |
| Output mode                 | Single-phase                              |              |              |              |               |  |  |  |
| Output wave                 | Pure Sine Wave                            |              |              |              |               |  |  |  |
| Load Power factor           | 0.2-1(Load power≪Continuous output power) |              |              |              |               |  |  |  |
| Distortion THD              | ≤3%(24V or 48V resistive load)            |              |              |              |               |  |  |  |
| Max. efficiency             | 95%                                       |              |              |              |               |  |  |  |

| Transfer time                         | 20mS(resistive load)                                                                  |               |               |                            |        |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------|---------------|---------------|----------------------------|--------|--|--|--|
| Utility charging                      |                                                                                       |               |               |                            |        |  |  |  |
| Utility input voltage range           | 160VAC~280VAC(Working voltage range)<br>170VAC~270VAC(Utility starting voltage range) |               |               |                            |        |  |  |  |
| Max. utility charge current           | 15A                                                                                   | 15A           | 30A           | 30A                        | 30A    |  |  |  |
| Solar charging                        |                                                                                       |               |               |                            |        |  |  |  |
| Max. PV open circuit<br>voltage       | 150V*<br>138V <sup>◆</sup>                                                            |               |               | 200V*<br>180V <sup>◆</sup> |        |  |  |  |
| Max. PV input power                   | 1040W                                                                                 | 3000W         | 3000W         | 4000W                      | 5000W  |  |  |  |
| Max. PV charging current              | 20A                                                                                   | 60A           | 60A           | 80A                        | 100A   |  |  |  |
| Equalization voltage                  | 58.4V                                                                                 |               |               |                            |        |  |  |  |
| Boost voltage                         | 57.6V                                                                                 |               |               |                            |        |  |  |  |
| Float voltage                         | 55.2V                                                                                 |               |               |                            |        |  |  |  |
| Tracking efficiency                   | ≤99.5%                                                                                |               |               |                            |        |  |  |  |
| Charging conversion<br>efficiency     | ≤98%                                                                                  |               |               |                            |        |  |  |  |
| Temperature<br>compensate coefficient | -3mV/°C/2V (Default)                                                                  |               |               |                            |        |  |  |  |
| Others                                |                                                                                       |               |               |                            |        |  |  |  |
| No load consumption                   | ≤0.6A                                                                                 | ≤0.6A         | ≤0.8A         | ≤0.8A                      | ≤0.8A  |  |  |  |
| Enclosure                             | IP30                                                                                  |               |               |                            |        |  |  |  |
| Relative humidity                     | < 95% (N.C.)                                                                          |               |               |                            |        |  |  |  |
| Environment temperature               | -20°C~50°C(100% input and output with no derating)                                    |               |               |                            |        |  |  |  |
| Altitude                              | <5000m(Derating to operate according to IEC62040 at a height exceeding 1000m)         |               |               |                            |        |  |  |  |
| Mechanical Parameters                 |                                                                                       |               |               |                            |        |  |  |  |
| Dimension                             | 444×300×126mm                                                                         | 518×310×168mm | 605x315x178mm |                            |        |  |  |  |
| Mounting size                         |                                                                                       |               | 230mm         |                            |        |  |  |  |
| Mounting hole size                    | Ф8mm                                                                                  |               |               |                            |        |  |  |  |
| Weight                                | 7.3kg                                                                                 | 14.7kg        | 16.6kg        | 17.5kg                     | 17.8kg |  |  |  |

★At minimum operating environment temperature

♦At 25°C environment temperature

Any changes without prior notice! Version number: V2.3

HUIZHOU EPEVER TECHNOLOGY CO., LTD.

Tel: +86-752-3889706

E-mail: info@epever.com

Website: www.epever.com