

Inverter/Charger

User Manual

UP2000-HM6021 / UP2000-HM6022 UP3000-HM5041 / UP3000-HM5042 UP3000-HM8041 / UP5000-HM8042

UP3000-HM10021 / UP3000-HM10022

Contents

Safety Instructions	1
Disclaimers	5
1 General Information	6
1.1 Overview	6
1.2 Identification of parts	7
1.3 Naming rules	10
1.4 Connection diagram	10
2 Installation Instructions	12
2.1 General installation notes	12
2.2 Before installation	12
2.3 Determine the installation position	16
2.4 Install the inverter/charger	17
2.5 Wiring	18
2.6 Operating the inverter/charger	24
3 Interface	25
3.1 Indicator	25
3.2 Button	26
3.3 LCD	26
3.4 Operating mode	29
3.5 Settings	34
3.6 Battery discharge current limit	48
4 Protections	50
5 Troubleshooting	52
5.1 Status reference	52
5.2 Solutions	53
6 Maintenance	54
7 Specifications	55
Appendix 1 PV open-circuit voltage V _S input power	60

Safety Instructions

Please reserve this manual for future review.

This manual contains all the instructions for safety, installation, and operation of the UPower-Hi series inverter/charger (below referred to as the inverter/charger).

1. Explanation of symbols

Please read related literature accompanying the following symbols to enable users to use the product efficiently and ensure personal and property safety.

The entire system should be installed by professional and technical personnel.

Symbol	Definition
TIP	Indicates any practical advice for reference.
0	IMPORTANT: Indicates a critical tip during the operation, if ignored, may cause the device to run in error.
<u>^</u>	CAUTION: Indicates potential hazards, if not avoided, may cause the device damaged.
4	WARNING: Indicates the danger of electric shock, if not avoided, would cause casualties.
	WARNING HOT SURFACE: Indicates the risk of high temperature, if not avoided, would cause scalds.
Ţi	Read the user manual carefully before any operation.

Sticker on the inverter/charger:

2. Requirements for professional and technical personnel

- · Professionally trained;
- Familiar with related safety specification for the electrical system;
- · Read this manual carefully and master related safety cautions.

3. Professional and technical personnel is allowed to do

- Install the inverter/charger to a specified location;
- Conduct trial operations for the inverter/charger;
- · Operate and maintain the inverter/charger.

4. Safety cautions before installation

IMPORTANT	When you receive the inverter/charger, check whether there is any damage that occurred in transportation. Contact the transportation company, our local distributor, or our company in time for any problem.
CAUTION	When storing or moving the inverter/charger, follow the instructions in the manual. When installing the inverter/charger, you must evaluate whether the operation area exists any arc danger.
WARNING	Do not store the inverter/charger where children can touch it. The inverter/charger is only allowed for stand-alone operation. Connecting multiple units' output in parallel or series would damage the inverter/charger.

5. Safety cautions for mechanical installation

- Before installation, make sure the inverter/charger has no electrical connection.
- Ensure the inverter/charger installation's heat dissipation space. Do not install the inverter/charger in humid, salt spray, corrosion, greasy, flammable, explosive, dust accumulative, or other severe environments.

· Check if all the wiring connections are tight to avoid the danger of heat

6. Safety cautions for electrical connection

The protective grounding must be connected to the ground. The cross-section of the wire should not be less than 4mm².
 A fast-acting fuse or circuit breaker should be used between the battery and the inverter/charger; the fast-acting fuse or circuit breaker's value should be twice the inverter/charger rated input current.
 DO NOT put the inverter/charger close to the flooded lead-acid battery because the

accumulation due to a loose connection.

terminals' sparkle may ignite the hydrogen released by the battery.

- The AC output port is only connected to the load. Therefore, it is strictly forbidden
 to connect other power sources or utilities. Otherwise, the damage will be caused
 to the inverter/charger. Also, turn off the inverter/charger before any installation.
- It is strictly forbidden to connect a transformer or a load with a surge power (VA)
 exceeding the overload power at the AC output port. Otherwise, the damage will
 be caused to the inverter/charger.
- Both utility input and AC output are of high voltage, do not touch the wiring connection to avoid electric shock.

7. Safety cautions for inverter/charger operation:

WARNING
нот
SURFACE

When the inverter/charger is working, it will generate a lot of heat; the cover temperature would be very high. Please do not touch it.

- When the inverter/charger is working, please do not open the inverter/charger cabinet to operate.
- When eliminating the faults or disconnecting the DC input, turning off the inverter/charger's switch, then carry out the operation after the LCD screen is completely OFF.

8. The dangerous operations which would cause electric arc, fire, or explosion:

- Touch the wire end that hasn't been insulation treated and maybe electriferous.
- Touch the wiring copper row or internal devices that may be electriferous.
- · The power cable connection is loose.
- Screw or other spare parts inadvertently falls into the inverter/charger.
- Incorrect operations are carried by untrained non-professional, or technical personnel.

Once an accident occurs, it must be handled by professional and technical personnel. Improper operations would cause more serious accidents.

9. Safety cautions for stopping the inverter/charger

- Firstly turn off the breakers on the utility input side and AC output side, then turn off the DC switch;
- · After the inverter/charger stops for ten minutes, the internal conductive devices could be touched;
- The inverter/charger can be restarted after removing the faults which may affect its safety performance;
- No maintenance parts in the inverter/charger. If any maintenance service is required, please contact our after-sales service personnel.

Do NOT touch or open the shell after the inverter is powered off within ten minutes.

10. Safety cautions for inverter/charger maintenance:

- Testing equipment is recommended to check the inverter/charger to make sure there is no voltage or current:
- When conducting electrical connection and maintenance work, must post temporary warning sign or
 put up barriers to prevent unrelated personnel from entering the electrical connection or maintenance
 area;
- Improper maintenance operation to the inverter/charger may cause personal injury or equipment damage:
- Wear an antistatic wrist strap, or avoid unnecessary contact with the circuit board.

The safety mark, warning label, and nameplate on the inverter/charger should be visible, not removed, or covered.

11. Environmental requirements

- Operating temperature: -20°C ~ +50°C(No sharp temperature changing)
- Storage temperature: -25°C ~ +60°C(No sharp temperature changing)
- Humidity: <95%(non-condensing)
- Altitude: <5000m (If the altitude exceeds 1000 meters, the actual output power is reduced according to IEC62040.)

The inverter/charger is for indoor installation only. It is strictly forbidden to use the inverter/charger in the following places, and we are not liable for any damage caused by using in improper places.

- Do not install the inverter/charger in humid, salt spray, corrosion, greasy, flammable, explosive, dust accumulative, or other severe environments.
- DO NOT put the inverter/charger close to the flooded lead-acid battery because the terminals' sparkle may ignite the hydrogen released by the battery.

Disclaimers

The warranty does not apply to the following conditions:

- Damage is caused by improper use or an inappropriate environment (such as the humid, salt spray, corrosion, greasy, flammable, explosive, dust accumulative, or other severe environments).
- The actual current/voltage/power exceeds the limit value of the inverter/charger.
- Damage caused by working temperature exceeds the rated range.
- Arc, fire, explosion, and other accidents are caused by failure to follow the inverter/charger stickers
 or manual instructions.
- Disassemble and repair the inverter/charger without authorization.
- · Damage is caused by force majeure.
- · Damage occurred during transportation or handling.

1 General Information

1.1 Overview

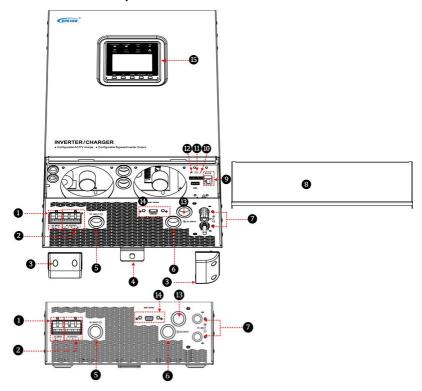
UPower-Hi, an upgrade hybrid inverter charger, supports utility charging, oil generator charging⁽¹⁾, solar charging, utility output, inverter output, and energy management. The DSP chip in the product with an advanced control algorithm brings high response speed and high conversion efficiency. In addition, this product adopts an industrial design to ensure high reliability and features multiple charging and output modes.

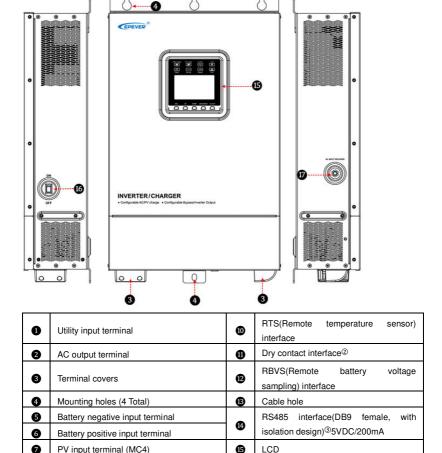
The new optimized MPPT charging technology fastly tracks the solar panels' max power point in any situation and obtains the maximum energy in real-time.

The AC to DC charging process adopts the advanced control algorithm to realize a full digital PFC and dual closed-loop control of voltage and current. As a result, the DC output charging voltage and current are continuously adjustable within a specific range.

The DC to AC inverting process, based on a fully smart digital design, adopts advanced SPWM technology to get a pure sine wave output. The inverting process converts the DC power to AC power, suitable for household appliances, power tools, industrial equipment, audio systems, and other electronics.

The 4.2-inch LCD shows the operational status and full parameters.


To maximize solar energy utilization, users can choose energy sources according to actual needs and flexibly take the utility as a supplement. This inverter charger can increase the system's power supply guarantee rate, which is suitable for solar energy, utility/oil generator hybrid systems. It aims to provide users with high-quality, high-stability, and high-reliability electrical energy.


Features

- · Full digital energy storage inverter/charger for multi-energy management.
- Three charging modes: Solar only, Solar priority, Utility & Solar.
- Two AC output modes: Utility priority and Inverter priority.
- · Supports the battery mode or non-battery mode.
- Non-battery mode: charging with solar (Main) and utility (Assist) simultaneously.
- Remote temperature compensation for battery.
- · Battery charging or discharging current limit to compatible with different types of batteries.
- (Optional) Anti-surge and reverse connection protections to match the lithium battery perfectly.
- Advanced MPPT technology, with Max. tracking efficiency higher than 99.5%.
- PFC technology reduces the demand on the power grid capacity.
- Max utility charging current settings to flexibly configure utility charging power.
- Advanced SPWM technology and pure sine wave output.

- · Full digital double closed-loop control.
- · Supports cold start and soft start.
- 4.2-inches LCD display for better status monitoring.
- Multiple LED indicators show system status in real-time.
- · AC OUT button to control the AC output directly.
- SOC (State of Charge) display with self-learning capability.
- RS485 communication interface with optional 4G or Wi-Fi modules for remote monitoring.
- Lithium battery communication port to perform the safe charging and discharging.
- Comprehensive electronic protection features.
- ① The oil generator, connected to the UPower-Hi AC input terminal, must be a digital inverter generator; otherwise, the AC charging and utility will not work properly.

1.2 Identification of parts

① BMS-Link connection port (RJ45)

BMS-Link connection port(RJ45, without

isolation design) 5VDC/200mA

External cover

+ Function:

8

Through a BMS-Link converter, different lithium battery manufacturers' BMS protocols can be converted into our company's standard BMS protocol. In addition, it realizes the communication between the inverter/charger and the BMS.

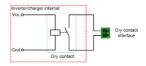
1

Ø

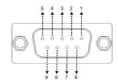
Power switch

Utility overcurrent protector

+ RJ45 pin definition:



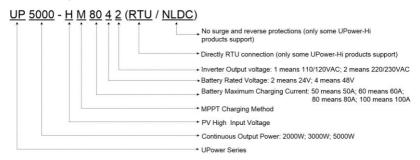
Pin	Definition	Pin	Definition
1	+5VDC	5	RS485-A
2	+5VDC	6	RS485-A
3	RS485-B	7	GND
4	RS485-B	8	GND


Please refer to the "UPower-Hi-Attachment" or contact our technical supporters for the currently supported BMS manufacturers and the BMS parameters.

2 Dry contact interface

Working principle: When the battery voltage reaches the dry contact ON voltage (DON), the dry contact is connected. Its coil is energized. The dry contact can drive resistive loads of no more than 125VAC /1A, 30VDC/1A. According to different battery types of the inverter charger, the default values of the dry contact ON (DON) voltage and the dry contact OFF(DOF) voltage are different. Please refer to the chapter 3.5 Settings > item 19 DON and item 20 DOF for details.

(3) RS485 interface (DB9 female)

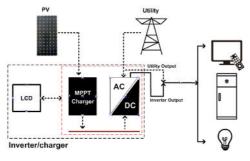

DB9 pin definition for RTU-type UP-Hi series:

Pin	Definition	Pin	Definition
1-2	NC	6	NC
3	+12VDC	7	RS485-A
4	GND2(+12VDC power ground)	8	RS485-B
5	GND1(+5VDC power ground)	9	+5VDC

DB9 pin definition for other types UP-Hi series:

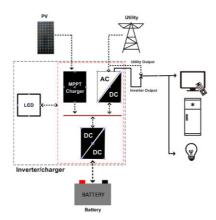
Pin	Definition	Pin	Definition
1-4	NC	7	RS485-A
5	GND	8	RS485-B
6	NC	9	+5VDC

1.3 Naming rules

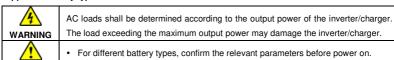


Instructions:

Decident Medal Outto	Functions		
Product Model Suffix	Anti-surge and anti-reverse	RTU connection	
No (Regular models)	✓	×	
RTU	✓	✓	
NLDC	×	×	


1.4 Connection diagram

· No battery mode


· Battery mode

CAUTION

Supported battery types: AGM、GEL、FLD、LFP8/LFP15/LFP16、LNCM7/LNCM14

No-battery mode and battery mode can set by setting item 0.

2 Installation Instructions

2.1 General installation notes

- Read all the installation instructions carefully in the manual before installation.
- Be very careful when installing the batteries. Please wear eye protection when installing the opentype lead-acid battery, and rinse with clean water in time for battery acid contact.
- · Keep the battery away from any metal objects, which may cause a short circuit of the battery.
- Acid gas may be generated when the battery is charged. Ensure that the surrounding environment is well ventilated.
- The inverter/charger requires enough clearance above and below for proper airflow. Do not install
 the inverter/charger and the lead-acid liquid battery in the same cabinet to avoid the batteries' acid
 gas from corroding the inverter/charger.
- Only charge the batteries within the control range of this inverter/charger.
- Loose power connections and corroded wires may result in high heat that can melt wire insulation, burn surrounding materials, or even cause a fire. Ensure tight connections and secure cables with clamps to prevent them from swaying while moving the inverter/charger.
- Select the system cables according to the current density of not more than 3.5A/mm² (according to the National Electrical Code Article 690 NFPA70.)
- The inverter/charger is for indoor installation only. Do not install the inverter/charger in a harsh environment such as humid, salt spray, corrosion, greasy, flammable, explosive, or dust accumulative.
- After turn off the power switch, there is still high voltage inside the inverter/charger. Therefore, do
 not open or touch the internal components and perform related operations after the capacitor's total
 discharge.
- The DC input terminal is equipped with reverse polarity protection. Therefore, the reverse
 connection of the DC input terminal will not cause fatal damage to the product. However, it is
 strongly recommended to connect the inverter/charger with the PV array and utility after normal
 running.
- Both utility input and AC output are of high voltage, do not touch the wiring connection to avoid electric shock
- To prevent injury, do not touch the fan while it is working.

2.2 Before installation

2.2.1 Check the pack list

Inverter/charger 1 pcs

- User manual 1ps
- Included accessories 1pcs(Details refer to the "Accessories list" file shipped with the inverter/charger.)

2.2.2 Prepare modules

1) Battery

· Recommended wire size of the battery and the circuit breaker is as below.

Model	Battery wire size	Circuit breaker	Ring terminal
UP2000-HM6021	20mm ² /4AWG	2P—125A	RNB38-8S
UP2000-HM6022	20mm²/4AWG	2P—125A	RNB38-8S
UP3000-HM5041	16mm²/5AWG	2P—100A	RNB22-8
UP3000-HM5042	16mm²/5AWG	2P—100A	RNB22-8
UP3000-HM8041	16mm²/5AWG	2P—100A	RNB22-8
UP3000-HM10021	35mm²/1AWG	2P—200A	RNB38-8S
UP3000-HM10022	35mm²/1AWG	2P—200A	RNB38-8S
UP5000-HM8042	35mm²/1AWG	2P—200A	RNB38-8S

- The actual battery wire size must be no less than the recommended wire size!
- If the actual battery wire size is less than the recommended wire size, a circuit
 breaker, whose current determined by the actual load current, must be installed on
 the battery side.
- We are not liable for any damage caused by the choice of inappropriate wire size and the absence of circuit breaker or external fast-acting fuse.

· Making the battery connection wire

Step1: Ring terminal 2pcs (included accessories).

Step2: Battery positive and negative connection wires 2 pcs(red +, black -). The wire length is determined according to the customer's actual requirement.

Step3: Strip one end of the battery connection wire for about d mm (size d is determined according to the ring terminal).

Step4: Pass the exposed wire through the ring terminal, and secure the wire firmly with a wire clamp.

2) AC Load

Recommended wire size of the AC load and the circuit breaker is as below.

Model	Load wire size	Circuit breaker	Torque
UP2000-HM6021	6mm²/9AWG	2P—40A	1.2N.M
UP2000-HM6022	3.4mm ² /12AWG	2P—16A	1.2N.M
UP3000-HM5041	6mm²/9AWG	2P—40A	1.2N.M
UP3000-HM5042	4mm ² /11AWG	2P—25A	1.2N.M
UP3000-HM8041	6mm²/9AWG	2P—40A	1.2N.M
UP3000-HM10021	6mm²/9AWG	2P—40A	1.2N.M
UP3000-HM10022	4mm ² /11AWG	2P—25A	1.2N.M
UP5000-HM8042	6mm²/9AWG	2P—40A	1.2N.M

Making the connection wire of the AC load:

Strip the AC load connection wires (3 pcs) for about 10 mm.

Symbols	Abbreviation	Name	Color
L	LINE	Live wire	Brown/black
N	Neutral	Neutral line	Blue
<u>_</u>	_	Ground line	Yellowish green

3) PV modules

Recommended wire size of the PV module and the circuit breaker is as below.

Since the PV array's output current varies with the type, connection method, or sunlight angle, its minimum wire size can be calculated by the short circuit current(ISC). Please refer to the ISC value in the PV module's specifications. When the PV modules are connected in series, the total ISC equals any PV module's ISC. When the PV modules are connected in parallel, the total ISC equals all PV modules' ISC.

Please refer to the table below:

Model	PV wire size	Circuit breaker
UP2000-HM6021	6mm²/9AWG	2P—40A
UP2000-HM6022	4mm²/11AWG	2P—25A
UP3000-HM5041	6mm²/9AWG	2P—40A
UP3000-HM5042	6mm²/9AWG	2P—40A
UP3000-HM8041	10mm ² /7AWG	2P—50A
UP3000-HM10021	6mm²/9AWG	2P—40A
UP3000-HM10022	6mm²/9AWG	2P—40A
UP5000-HM8042	6mm²/9AWG	2P—40A

. Making the connection wire of the PV module:

Step1: Each MC4 male terminal and female terminal 1pcs(included accessories)

Step2: PV module positive and negative connection wires 2 pcs(red +, black -). The wire length is determined according to the customer's actual requirement.

Step3: Strip one end of the PV module positive wire for about 5mm, and press the exposed wire to the inner core of the MC4 male terminal, as shown below:

Step4: Tight press the copper wire and the MC4 male terminal's inner core with a plier and ensure the connection is secure.

Step5: Unscrew the nut of the MC4 male terminal, insert the inner core into the MC4 terminal, and screw the nut.

Step6: Strip one end of the PV module negative wire for about 5mm, and press the exposed wire to the inner core of the MC4 female head, as shown below:

Step7: Tight press the copper wire and the MC4 female head's inner core with a plier and ensure the connection is secure.

Step8: Unscrew the nut of the MC4 female terminal, insert the inner core into the MC4 terminal, and screw the nut.

4) Utility input

· Recommended wire size of the utility input and the circuit breaker is as below.

Model	Utility wire size	Circuit breaker	Torque
UP2000-HM6021	6mm²/9AWG	2P—40A	1.2N.M
UP2000-HM6022	3.4mm ² /12AWG	2P—16A	1.2N.M
UP3000-HM5041	6mm²/9AWG	2P—40A	1.2N.M
UP3000-HM5042	4mm ² /11AWG	2P—25A	1.2N.M
UP3000-HM8041	6mm²/9AWG	2P—40A	1.2N.M
UP3000-HM10021	6mm²/9AWG	2P—40A	1.2N.M
UP3000-HM10022	4mm ² /11AWG	2P—25A	1.2N.M
UP5000-HM8042	6mm²/9AWG	2P—40A	1.2N.M

· Making the connection cable of the utility input:

Strip two connection wires of the utility input for about 10 mm.

Symbols	Abbreviation	Name	Color
L	LINE	Live wire	Brown/black
N	Neutral	Neutral line	Blue

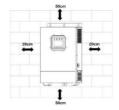
2.3 Determine the installation position


Step1: Remove mounting plate 1 and mounting plate 2 behind the inverter/charger with a screwdriver.

Step2: Mark the installation position with the mounting plate 1. The distance between the two mounting holes is 300mm.

Step3: Rotate the direction of mounting plate 1 and plate 2, install them again.

2.4 Install the inverter/charger

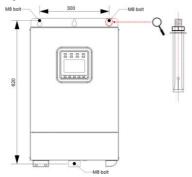

Risk of explosion! Never install the inverter/charger in a sealed enclose with flooded batteries! Do not install the inverter/charger in a confined area where the battery gas can accumulate.

- The inverter/charger can be fixed to the concrete and solid brick walls and cannot be fixed to the hollow brick wall.
- The inverter/charger requires at least 20cm of clearance right and left and 50cm of clearance above and below.

Step1: Determine the installation location and heat-dissipation space.

The inverter/charger requires at least 20cm of clearance right and left and 50cm of clearance above and below.

Step2: According to the installation position marked with the mounting plate 1, drill two M10 holes with an electric drill.


Step3: Insert the screws of the M8 bolts and the steel pipes into the two M10 holes.

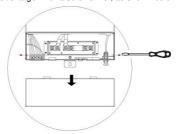
Step4: Install the inverter/charger and determine the installation position of the M10 hole (located at the bottom of the inverter/charge).

Step5: Remove the inverter/charger and drill an M10 hole according to the position determined in step4.

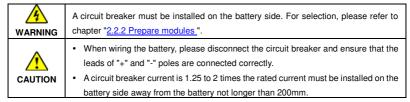
Step6: Insert the screw of the M8 bolt and the steel pipe into the M10 hole.


Step7: Install the inverter/charger and secure the nuts with a sleeve.

2.5 Wiring


1) Remove the terminal cover

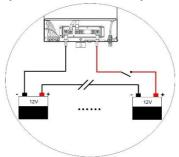
Remove covers of the AC output /AC input/utility input terminal with a screwdriver, as shown below:



2) Remove the inverter/charger cover

Remove the screws beside the inverter/charger with a screwdriver, as shown below:

3) Connect the battery

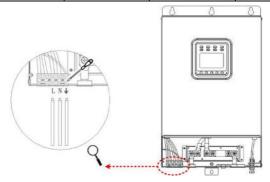

· Connection sequence of the battery

Step1: Remove the screw of the inverter/charger positive terminal with a sleeve, the torque of which is 3.5N.M.

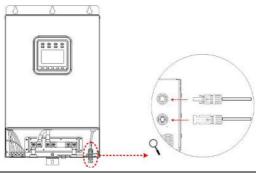
Step2: Connect the ring terminal of the battery connection wire to the inverter/charger's positive terminal.

Step3: Install the screw and secure it with the sleeve.

Step4: Connect and secure the negative terminal of the inverter/charger following the step1~step3.



4) Connect the AC load

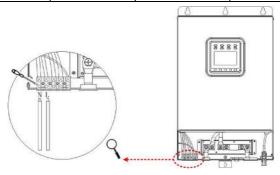


- Risk of electric shock! When wiring the AC load, please disconnect the circuit breaker and ensure that the poles leads are connected correctly.
- If utility input exists, the inverter/charger must be connected to the ground terminal.
- We do not assume any responsibility for the unnecessary danger when the ground terminal is not connected correctly.

Silk-screen	Abbreviation	Name	Color
L	LINE	Live wire	Brown/black
N	Neutral	Neutral line	Blue
<u>_</u>		Ground line	Yellowish-green

5) Connect the PV modules

Risk of electric shock! When wiring the PV modules, please disconnect the circuit breaker and ensure that the leads of "+" and "-" poles are connected correctly.


If the inverter/charger is used in an area with frequent lightning strikes, installing an external surge arrester is recommended.

6) Connect the utility input

- Risk of electric shock! When wiring the utility input, please disconnect the circuit breaker and ensure that the poles' leads are connected correctly.
- When the utility is connected, the PV and battery terminals are prohibited from grounding, while the UPower-Hi shell must be reliably grounded. It can effectively shield the external electromagnetic interference and prevent the shell from electric shock to the human body.

Silk-screen	Abbreviation	Name	Color
L	LINE	Live wire	Brown/black
N	Neutral	Neutral line	Blue

7) Connect accessories

A. RBVS interface

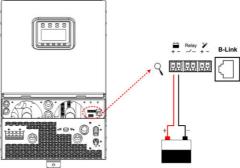
♦ Function:

This interface can be connected to the battery voltage sampling wire to detect the battery voltage accurately. The sampling distance is no longer than 20 meters.

♦ Needs:

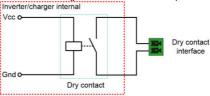
3.81-2P terminal 1 pcs

Positive and negative(red+, black-) wire 1 pcs each (determine the length and wire size of the connecting wire according to the customer's actual needs.)


♦ Making the RBVS wire:

One end of the positive and negative wire is connected to the 3.81-2P terminal. The other end is connected to the positive and negative terminals of the battery.

When connecting the RBVS wire, ensure the positive and negative poles (red +, black

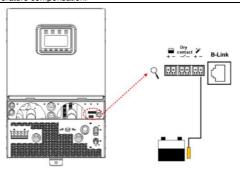

_

B. Dry contact interface

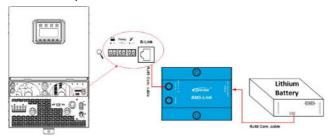
♦ Function:

The dry contact interface can turn on/off the generator and is connected parallel with the generator's switch.

♦ Working principle:


When the battery voltage reaches the dry contact ON voltage(DON), the dry contact is connected. Its coil is energized. The dry contact can drive loads of no more than 125VAC /1A, 30VDC/1A. According to different battery types of the inverter charger, the default values of the dry contact ON(DON) voltage and the dry contact OFF(DOF) voltage are different. Please refer to the chapter 3.5 Settings > item 19 DON and item 20 DOF for details.

C. Connect the RTS interface


Category	Name	Model	Picture
Included accessory	External temperature sensor	RT- MF58R47K3.81A	0
Optional accessory	Remote Temperature Sensor	RTS300R47K3.81A	0

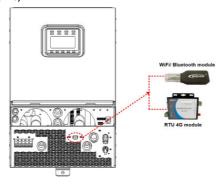
Suppose the remote temperature sensor is not connected to the inverter/charger. The default setting for battery charging or discharging temperature is 25°C without temperature compensation.

D. BMS-Link connection port (RJ45)

♦ Function:

Through a BMS-Link converter, different lithium battery manufacturers' BMS protocols can be converted into our company's standard BMS protocol. In addition, it realizes the communication between the inverter/charger and the BMS.

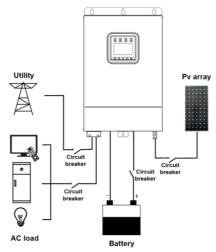
♦ Needs:


(Included)CC-RS485-RS485-350mm(Connect the inverter/charger to the BMS-Link converter)

(Optional)RS485 communication cable(Connect the lithium battery to the BMS-Link converter. Adjust the cable according to the lithium battery's BMS line sequence)

This connection port is only used to connect the BMS-Link converter. For details about the BMS-Link, please refer to *BMS-LINK Manual*.

E. RS485 interface (DB9)



♦ Function:

For base UPower-Hi products, its DB9 interface provides 0.2A/5V power supply and can be connected to a WiFi module, Bluetooth module, or PC software.

For RTU-type UPower-Hi products, its DB9 interface provides 0.2A/12V power supply and can be connected to RTU 4G module, WiFi module, Bluetooth module, or PC software.

Install the cover and secure the screws.

2.6 Operating the inverter/charger

- Connect the battery circuit breaker.
- 2) Turn the rocker switch on the side of the inverter/charger to the ON state. The inverter/charger generally works when the indicator is ON solid.

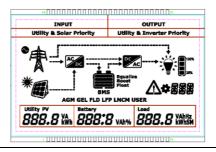
Ensure that the battery connection is correct and the battery circuit breaker is turned on first. And then, connect the PV array and utility circuit breakers after the inverter/charger running normally. Again, we won't assume any responsibility for not following the operation.

- 3) Connect the PV circuit breaker.
- 4) Connect the circuit breaker at the utility input.
- 5) After the AC output is normal, turn on the AC loads one by one. The inverter/charger typically works as per the set mode. Do not turn on all the loads simultaneously to avoid protection due to a large transient impulse current.

- · When supplying power for different AC loads, it is recommended to turn on the load with a large impulse current. And then turn on the load with a smaller impulse current after the load output is stable.
 - If the inverter/charger is not operating correctly or the LCD or the indicator shows an abnormality, please refer to "Troubleshooting" or contact us.

3 Interface

3.1 Indicator


Indicator	Color	Status	Definition
		Off	No utility input
Utility Charge	Green	On solid	Utility connected, but not charging
一天		Slowly flashing (0.5Hz)	Utility is charging
		Fast flashing (2.5Hz)	Utility charging fault
		Off	No PV input
PV Charge	Green	On solid	PV connected, but not charging
	Green	Slowly flashing (0.5Hz)	PV is charging
		Fast flashing (2.5Hz)	PV charging fault
		Off	Inverter is off
Inverter	0	On solid	Inverter standby or bypass
\sim	Green	Slowly flashing (0.5Hz)	Inverter supplies power
		Fast flashing (2.5Hz)	Inverter fault
Load	0	Off	Load off
₩	Green	On solid	Load on
	0	Off	Relay disconnected
Relay	Green	On solid	Relay connected
		On solid	Remote control load on by cloud
			platform or phone APP
		Slowly flashing (0.5Hz)	Remote control load off by cloud
Remote	Green	Slowly liastillig (0.3f12)	platform or phone APP
		Off	No remote control
		Oil	No remote control
[=/~]	Green	Off	Inverter supplies power
Bypass		Slowly flashing (0.5Hz)	Utility supplies power
		Off	Device normal
Fault	Red	On solid	Device fault

3.2 Button

Button	Operation	Instruction
ESC	Click(<50ms)	Exit the current interface
	Long press(>2.5s)	Clear the faults
UP DOWN	Click(<50ms)	Browse/Setting Interface: "UP" for page up; "Down" for page down Modify parameter values: "UP" to increase the value; "DOWN" to decrease the value
SET/ENTER	Click(<50ms)	Switch the page on the real-time monitoring interface Confirm settings
	Long press(>2.5s)	Switch between "Real-time monitoring interface," "Settings interface," "Parameters interface." 2.Confirm settings
AC OUT	Long press(>2.5s)	Switch on/off the AC output

3.3 LCD

The display screen can be viewed clearly when the angle between the end-user's horizontal sight and the display screen is within 90°. If the angle exceeds 90°, the information on the display screen cannot be viewed clearly.

Symbol definition

Symbol	Definition	Symbol	Definition
~	Utility connected and charging		PV connected and charging
*	Utility disconnected Utility connected, but no charge	, III	PV disconnected PV connected, but the voltage is low
	Load ON		Load OFF
	Battery capacity [©] lower than 15% [©]		Battery capacity [©] 15%~40%
	Battery capacity [©] 40%~60%		Battery capacity [©] 60%~80%
	Battery capacity [©] 80%~100%	BMS	Symbol ON: Battery with BMS Symbol OFF: Battery without BMS Attention: Please follow the BMS control logic to set parameters when the battery with BMS.
100%	Load power 8~25%(one cell)	100%	Load power 25~50%(two cells)
100%	Load power 50~75%(three cells)	100%	Load power 75~100%(four cells)

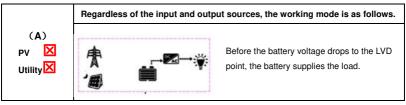
- ① After the inverter/charger is powered on for the first time, the battery capacity displayed on the LCD may be inaccurate. To display the available battery capacity accurately, the below process of self-calibration and self-learning is necessary.
- When the battery voltage reaches the low voltage disconnect voltage or reaches the float charging voltage, the inverter/charger calibrates the battery capacity for the first time.
- When the battery goes from the over-discharged state to the fully-charged state, the inverter/charger calibrates the battery capacity again.

When the connected lithium battery (with BMS) is equipped with a battery capacity display, the lithium battery capacity will be displayed as per the BMS.

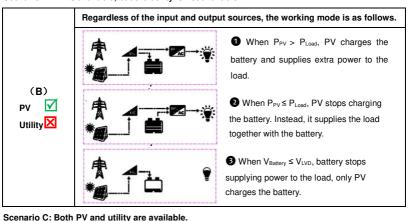
Interface Definition

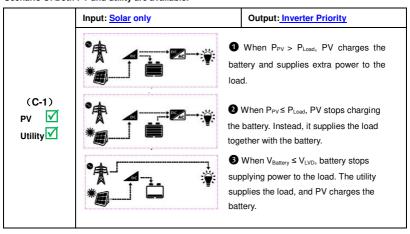
Item	Settings	Content
INPUT Solar Priority	INPUT	Solar priority Utility & solar
Solar Priority		Solar
OUTPUT		Utility priority
Inverter Priority	OUTPUT	Inverter priority
		AC output voltage
Load	Land	AC output current
888.8 KWhsm	Load	AC output power
		AC output frequency
		Battery voltage
Battery		Max. charging current(PV charging
888:8 VAIN	Battery	current+ utility charging current)
<u> </u>		Battery temperature
		Battery SOC
		PV input voltage
	PV	PV input current
	ΓV	PV input power
Utility PV		PV input capacity
000.0 kWh		Utility input voltage
	Utility	Utility charging input current
	Othity	Utility charging input power
		Utility input capacity
		AGM
		GEL
AGM GEL FLD LFP LNCM USER	Battery Type	FLD
AGH GEL FED EFF ERGH USER	ballery Type	LFP8/LFP15/LFP16
		LNCM7/LNCM14
		AGM/GEL/FLD/LFP/LNCM+USER

3.4 Operating mode


3.4.1 Abbreviation

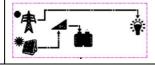
Abbreviation	Illustration
P _{PV}	PV power
P _{LOAD}	Load power
V_{BAT}	Battery voltage
LVR	Low voltage reconnect voltage
LVD	Low voltage disconnect voltage
AOF	Auxiliary module OFF voltage(namely, Utility charging OFF voltage)
AON	Auxiliary module ON voltage(namely, Utility charging ON voltage)
MCC	Max charging current


3.4.2 Battery mode


	Solar	Only solar energy can charge the battery, no matter utility is available or not.
Solar Priority	When PV power is sufficient, PV charges the battery. When the battery voltage is lower than AON, the utility charges the battery as a supplement; when the battery voltage is higher than AOF, the utility stops charging the battery.	
INPUT		Note: AOF and AON setting refers to Item 17/18 on the Advanced interface for engineers.
		PV and utility charge the battery at the same time. When PV power is sufficient, the PV power is the primary source.
	Utility & Solar	Note: After selecting this working mode, the output mode is not controlled freely, though it can be set. Details refer to the
		below instructions.
	Inverter Priority	PV power is sufficient (namely, extra energy exists except charging the battery), PV supplies the load as a priority. When PV power is insufficient, the battery supplies the load as a supplement. When the battery voltage is lower than LVD, the utility supplies the load as a supplement.
ОИТРИТ	Note: LVD and LVR settings refer to Item 7 on the Standard interface for common users.	
	Utility Priority	Utility supplies the load as a priority. When the utility is abnormal, the PV supplies the load as a supplement. When PV power is insufficient, the battery supplies the load as a supplement.

Scenario A: Both PV and utility are not available.

Scenario B: PV is available, but the utility is not available.



(C-2) ΡV Utilitv ✓

Input: Solar only

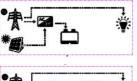
Input: Solar Priority

Output: Utility Priority

Utility supplies the load, and PV charges the battery.

Output: Inverter Priority

battery and supplies extra power to the load. 2 When P_{PV} ≤ P_{Load}, PV stops charging

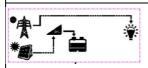

the battery. Instead, it supplies the load

together with the battery.

1 When $P_{PV} > P_{Load}$, PV charges the

(C-3) Utility

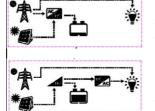
3 When the battery voltage goes lower than or equal to AON and has not been charged to AOF, the below interfaces show different conditions.



When P_{PV} ≤ MCC* V_{BAT}, the utility supplies the load alone and charges the battery together with the PV.

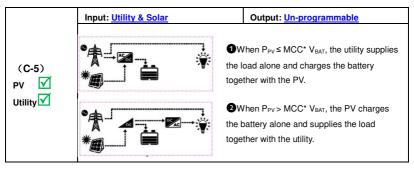
When P_{PV} > MCC* V_{BAT}, PV charges the battery alone and supplies the load together with the utility.

(C-4)PV Utility

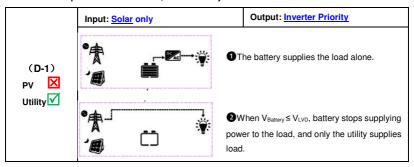


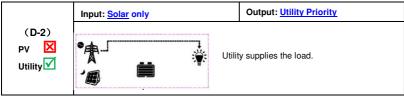
Input: Solar Priority

Output: Utility Priority

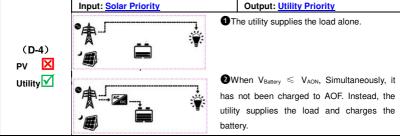

1PV charges the battery, and the utility supplies the load.

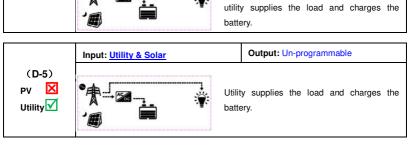
When the battery voltage goes lower than or equal to AON and has not been charged to AOF, the below interfaces show different conditions.

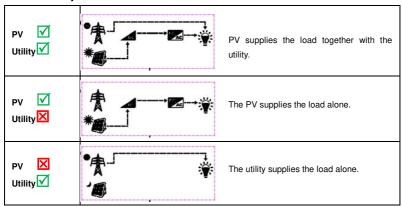


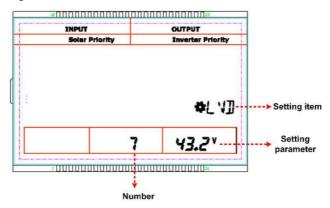

When $P_{PV} \le MCC^* \ V_{BAT}$, the utility supplies the load alone and charges the battery together with the PV.

When $P_{PV} > MCC^*$ V_{BAT} , the PV charges the battery alone and supplies the load together with the utility.




Scenario D: PV power is not available, and the utility is available.





3.4.3 No battery mode

3.5 Settings

1) Standard interface for common users

Operations:

- Step1: In the real-time interface, long press the SET/ENTER button to enter the standard interface.
- Step2: Press the UP/DOWN button to select the setting item.
- **Step3:** Long press the SET/ENTER button to enter the parameter setting interface.
- Step4: Press the UP/DOWN button to change the parameters.
- Step5: Press the SET/ENTER button to confirm.
- Step6: Press the ESC button to exit.

Setting items:

NO.	Instruction	Setting			
	No battery mode	⊕ 875 0 ⊬ES	Battery mode(Default)		
0	or battery mode	\$ £75 0∩ 0	No battery mode		
		Ф ЕТР	AGM(Default)		
		⇔ ∏TP gel.	GEL		
		•ETP	FLD		
	Battery type	Ф ЕТР " 1 8	LFP8		
		•87P " () \$	LFP15		
1		◆ ∉TP '* 15	LFP16		
		⊕ ЕТР ысм ; 7	LNCM7		
		◆ €TP Inde ! !4	LNCM14		
		Ф ЕТР	AGM/GEL/FLD/LFP/LNCM+U SER		
		AGM USER	Important: USER battery type can		
		1	be combined with other battery types and set corresponding parameters.		
	Charge mode	solur Priority ©[5P	Solar priority(Default)		
2		оппу а сниг ФС5Р	Utility & solar		
		личт sutur Ф [SP	Solar		

NO.	Instruction	Settir	ng
	Output mode	uniny	Utility priority(Default)
3		OUTPUT Invester Priority	Inverter priority
4	Temperature unit	⇔ TMU Ч E	°C(Default)
-	remperature unit	* ™U Y F * ELT	°F
		5 30.0 s	30S(Default)
5	LCD backlight time	⇔ ELT 5 60.0 s	608
		⊅ ELT 5 400.0 s	100S(on solid)
	Buzzer alarm	\$ €.45 6 DN	ON(Default)
6	switch	◆ E.45 5 	OFF
	Low voltage disconnect voltage	7 21.6V AGM(Default)/GEL/FLD: 21.6V LFP8: 25.5V LNCM7: 25.5V	User define for the 24V system: 21.6~32.0V Step size: long press for 1V, short press for 0.1V
7		лон ФLVII 7 43.2°	User define for the 48V system:
		AGM(Default)/GEL/FLD: 43.2V LFP15: 47.8V LFP16: 51.0V	43.2~64.0V Step size: long press for 1V, short press for 0.1V
		LNCM14: 51.0V	

NO.	Instruction	Setting			
	Low voltage	8 25.0° AGM(Default)/GEL/FLD: 25.0V LFP8: 26.0V LNCM7: 26.0V	User define for the 24V system: 21.6~32.0V Step size: long press for 1V, short press for 0.1V		
8	reconnect voltage	호는 ਪੁR 8 SO.O [∨]	User define for the 48V system:		
		AGM(Default)/GEL/FLD: 50.0V LFP15: 48.8V LFP16: 52.0V LNCM14: 52.0V	43.2~64.0V Step size: long press for 1V, short press for 0.1V		

When the output mode is inverter priority, and the battery voltage is lower than the low voltage disconnect voltage (configurable), the utility supplies the load.

2) Advanced interface for engineers

Operations:

Step1: In the real-time interface, long press the UP+DOWN button to enter the advanced interface.

Step2: Press the UP/DOWN button to select the setting item.

Step3: Long press the SET/ENTER button to enter the parameter configuring the interface.

Step4: Press the UP/DOWN button to modify the parameters.

Step5: Press the SET/ENTER button to confirm.

Step6: Press the ESC button to exit.

Setting items:

NO.	Instruction	Setting		
	Boost charging time	AGM 9	⇔ 8ET 30 m	30M
		лдн З	\$ EET 50 ×	60M
9		лан 9	# 8ET 128 m	120M(Default)
			лан 9	⇔ ⊠ET 18 8 ×

NO.	Instruction		Setting
		\$ E[T	
		10 30 m	30M
		\$ E[T	
	Equalize	10 60 x	60M
10	charging time	#8 68 H	
			120M(Default)
		10 120 H	
			180M
		Φ EEN	
		1 1 29.2°	
		AGM(Default): 29.2V	
		GEL: —	
		FLD: 29.6V	
		LFP8: 28.2V	
	Equalize	LNCM7: 28.9V	
11	charging	#E[\	It cannot be set, which changes depending on the
	voltage	11 S8.4°	boost charging voltage.
		AGM(Default): 58.4V	
		GEL:	
		FLD: 59.2V	
		LFP15: 53.0V	
		LFP16: 56.5V	
		LNCM14: 57.8V	
		AGH ФE[V	
		12 28.8	
		AGM(Default): 28.8V	User define for the 24V system: 21.6~32.0V
		GEL: 28.4V	Step size: long press for 1V, short press for 0.1V
		FLD: 29.2V	
		LFP8: 28.2V	
	Boost	LNCM7: 28.9V	
12	charging	AGH #EE'V	
	voltage	12 57.6	
		AGM(Default): 57.6V	
		GEL: 56.8V	User define for the 48V system: 43.2~64.0V
		FLD: 58.4V	Step size: long press for 1V, short press for 0.1V
		LFP15: 53.0V	
		LFP16: 56.5V	
		LNCM14: 57.8V	

NO.	Instruction		Setting	
		.ven Φ€\IP		
		13 25.4"		
		AGM(Default)/GEL/FLD:	User define for the 24V system: 21.6~32.0V	
		26.4V	Step size: long press for 1V, short press for 0.1V	
		LFP8: 26.4V		
	Boost voltage	LNCM7: 26.8V		
13	reconnect	AGM ♣€ √₽		
	voltage	13 52.8°		
		AGM(Default)/GEL/FLD:	User define for the 48V system: 43.2~64.0V	
		52.8V	,	
		LFP15: 49.5V	Step size: long press for 1V, short press for 0.1V	
		LFP16: 52.8V		
		LNCM14: 53.6V		
		⇔ F[V		
		14 27.81		
		AGM(Default)/GEL/FLD:	User define for the 24V system: 21.6~32.0V	
		27.6V	Step size: long press for 1V, short press for 0.1V	
		LFP8: 27.2V		
	Float	LNCM7: 28.2V		
14	charging	☆ F[\		
	voltage	14 55.21		
		AGM(Default)/GEL/FLD:		
		55.2V	User define for the 48V system: 43.2~64.0V	
		LFP15: 51.0V	Step size: long press for 1V, short press for 0.1V	
		LFP16: 54.4V		
		LNCM14: 56.4V		
		##∐\R		
		15 30.0°		
		AGM(Default)/GEL/FLD:	User define for the 24V system: 21.6~32.0V	
		30.0V	Step size: long press for 1V, short press for 0.1V	
		LFP8: 28.5V		
	Over voltage	LNCM7: 29.0V		
15	reconnect	♣ □'\₽		
	voltage	15 60.0°		
		AGM(Default)/GEL/FLD:	Here define for the 40V contains 40.0 0.1 0V	
		60.0V	User define for the 48V system: 43.2~64.0V Step size: long press for 1V, short press for 0.1V	
		LFP15: 53.5V		
		LFP16: 57.0V		
		LNCM14: 58.0V		

NO.	Instruction	Setting
16	Over voltage disconnect voltage	AGM(Default)/GEL/FLD: 32.0V LFP8: 29.0V LNCM7: 30.0V *** AGM(Default)/GEL/FLD: 64.0V LFP15: 54.5V LFP16: 58.0V LNCM14: 60.0V *** *** *** *** *** *** ***
17	Auxiliary module OFF voltage (namely, Utility charging OFF voltage)	User define for the 24V system: 21.6~32.0V Step size: long press for 1V, short press for 0.1V NOTE: The difference between AOF and AON should be larger than or equal to 0.5V, or else the setting cannot be saved. User define for the 48V system: 43.2~64.0V Step size: long press for 1V, short press for 0.1V NOTE: The difference between AOF and AON should be larger than or equal to 1V, or else the setting cannot be saved.
18	Auxiliary module ON voltage (namely, Utility charging ON voltage)	User define for the 24V system: 21.6~32.0V Step size: long press for 1V, short press for 0.1V NOTE: The difference between AOF and AON should be larger than or equal to 0.5V, or else the setting cannot be saved. User define for the 48V system: 43.2~64.0V Step size: long press for 1V, short press for 0.1V NOTE: The difference between AOF and AON should be larger than or equal to 1V, or else the setting cannot be saved.
19	Dry contact ON voltage	User define for the 24V system: 21.6~32.0V 19 22.2 Step size: long press for 1V, short press for 0.1V User define for the 48V system: 43.2~64.0V 19 44.4 Step size: long press for 1V, short press for 0.1V

NO.	Instruction	Setting		
		AGM	\$][]F	User define for the 24V system: 21.6~32.0V
	Dry contact	20	24 . 01	Step size: long press for 1V, short press for 0.1V
20	OFF voltage	АСМ	\$]0F	User define for the 48V system: 43.2~64.0V
		20	48.0°	Step size: long press for 1V, short press for 0.1V
				UP3000-HM5041/UP3000-HM5042:
				50A(Default) User define: 5~50A
				UP2000-HM6021/UP2000-HM6022:
	Maximum		Φ MEE	60A(Default) User define: 5~60A
21	charging	AGM		UP3000-HM10021/UP3000-HM10022:
	current	21	80.0 ^	100A(Default) User define: 5~100A
				UP3000-HM8041/UP5000-HM8042:
				80A(Default) User define: 5~80A
				Step size: long press for 10A, short press for 1A
	Max. utility charging current			UP2000-HM6021/UP2000-HM6022/UP5000-
				HM8042: 60A(Default) User define: 2~60A
			4 11UE	UP3000-HM5041/UP3000-HM5042/UP3000-
22		AGM 22	50.0 ^	HM8041: 40A(Default) User define: 2~40A
			e e BU.U ^	UP3000-HM10021/UP3000-HM10022:
				80A(Default) User define: 2~80A
			* FF.4	Step size: long press for 10A, short press for 1A
		AGM	Φ [FA	OFF(Default)
24	Clear fault	24	OFF •[FA	(= 5.12.1.)
	ordar radic	AGM	W LFA	ON
		24	ON * 9CL	
	Clear the PV	АДМ	₩4FF	OFF(Default)
25	accumulated	25	0FF #9EL	(======,
	energy	AGM		ON
	- 3,	25	חם	
				100AH(Default)
				User define:1~4000AH
				Step size:
			◆ TBE	Below 200AH: long press for 10A, short press for
26	Total battery	AGH		1A
	capacity	28	100 D *	Above 200AH: long press for 50A, short press for
				5A
				CAUTION: To accurately display the battery capacity,
				the customer needs to set this item according to the
<u> </u>		1		actual battery capacity.

NO.	Instruction	Setting		
	Temperature compensate coefficient	AGH	\$ TEE	3(Default) 0(lithium battery)
27		27	3	0~9(Non-lithium battery)
				Step size is 1
28	Charge low	AGH	⇔ TLE	0°C(Default) User define:-40°C~0°C
28	temperature limit	28	0 C	Step size: 5°C
	Discharge low	AGM	₽ TLL	0°C(Default)
29	temperature limit	29	0 C	User define:-40°C~0°C Step size: 5°C
		AGM	⇔ √PT	110VAC(Default for devices of 100V output
	Output voltage level	30	<i>110.0</i> ↑ ♦ √PT	voltage)
		30	1 20.0°	120VAC
30		AGM	♥ '\PT	220VAC(Default for devices of 200V output
		30	220.0°	voltage)
		AGM	⇔ ′IPT	230VAC
		30	230.0 ° * FRE	
	Output frequency	AGM	50.0 ™	50Hz (Default)
	(If detecting the	3 1	50.0 ™	
	utility input, the			
31	output		◆ FRE	
	frequency is	AGM 3 1	<i>60.0</i> №	60Hz
	switched to the	, ,	00.0	
	utility frequency automatically.)			
	Lithium battery	AGM	¢ LEN	
	protection	32	OFF.	OFF(Default)
	enable(stop			
	charging and			
32	discharging the	AGM	\$ LEN	ON
	lithium battery	32	an	(Note: After connecting to the BMS successfully, it
	when the			will be ON status automatically.)
	temperature is			
<u> </u>	too low)			

NO.	Instruction	Setting	
		AGM ♣€L V	
		3 3 30.0°	User define for the 24V system:
		AGM(Default)/GEL/FLD: 30.0V	21.6~32.0V
		LFP8: 28.5V	Step size: long press for 1V, short press for
		LNCM7: 29.4V	0.1V
33	Charge voltage	⇔ EL 'V	
	limit voltage	3 3 60.0	User define for the 48V system:
		AGM(Default)/GEL/FLD: 60.0V	43.2~64.0V
		LFP15: 53.5V	Step size: long press for 1V, short press for
		LFP16: 57.0V	0.1V
		LNCM14: 58.8V	
		AGM ♣∐√₽	
	Under voltage reconnect voltage	35 24.41	User define for the 24V system:
		AGM(Default)/GEL/FLD: 24.4V	21.6~32.0V
		LFP8: 26.2V	Step size: long press for 1V, short press for
		LNCM7: 26.7V	0.1V
35		♦U\ R	
		35 48.8°	User define for the 48V system:
		AGM(Default)/GEL/FLD: 48.8V	43.2~64.0V
		LFP15: 49.2V	Step size: long press for 1V, short press for
		LFP16: 52.4V	0.1V
		LNCM14: 53.4V	
		AGM	
		38 24.0°	User define for the 24V system:
		AGM(Default)/GEL/FLD: 24.0V	21.6~32.0V Step size: long press for 1V, short press for
		LFP8: 25.7V	0.1V
	Undervolter	LNCM7: 26.2V	0.17
36	Under voltage warning voltage	vew ♣∏.////	
	warning voltage	3 6 48.0°	User define for the 48V system:
		AGM(Default)/GEL/FLD: 48.0V	43.2~64.0V
		LFP15: 48.2V	Step size: long press for 1V, short press for
		LFP16: 51.4V	0.1V
		LNCM14: 52.4V	

NO.	Instruction	Setting		
			⇔ UMX	132.0V(Default for the 110V system)
	Utility over	лан 3 7	1 32.0°	User define: 110VAC~140VAC
37	voltage	٠ د	, 36.0	Step size: long press for 10V, short press for 1V
31	disconnect		⇔ Ll11X	264.0V(Default for the 220V system)
	voltage	AGM 37	264.01	User define: 220VAC~280VAC
		, ,	20 1.0	Step size: long press for 10V, short press for 1V
			⇔ UMI	88.0V(Default for the 110V system)
	Utility low voltage	AGM 38	88.0 °	User define: 80VAC~110VAC
38	disconnect	20	00.0	Step size: long press for 10V, short press for 1V
30	voltage		# LIMI	176.0V(Default for the 220V system)
	voitage	3 <i>8</i>	175.0°	User define: 90VAC~190VAC
		30	7 10.0	Step size: long press for 10V, short press for 1V
				UP2000-HM6021/UP2000-HM6022:
				200A(Default) User define: 10~200A
	Battery discharge			UP3000-HM5041/UP3000-HM5042/UP3000-
	current limit		* EDC	HM8041: 150A(Default) User define: 10~150A
39		AGM 3 9	250.0 *	UP3000-HM10021/UP3000-HM10022:
	Refer to 3.7 for details.	33	230.0	300A(Default) User define: 10~300A
				UP5000-HM8042: 250A(Default)
				User define: 10~250A
				Step size: Long press for 10A, short press for 1A
				1(Default)
	Lithium battery	ACM	⇔ PR□	User Define: 1~200
40	protocol type	40	1	NOTE: Refer to the "1.2 Identification of parts > ①
	protocor type	., .	•	BMS-Link connection port(RJ45)" for details.
				,
				OFF(Default), disable the BMS function.
		AGM	⇔ EEN	ON, enable the BMS function. Normal BMS comm.: The BMS controls the
41	BMS enable		OCC	UP-Hi charge/discharge.
		41	OFF	Error BMS comm.: The UP-Hi automatically enters the no-battery mode and displays
				BME.
			\$ 500	OFF(Default)
42	Battery capacity	AGN	055	ON: The SOC parameters are cleared and
	,,	42	OFF	recalculated.
	Meter software	AGM	⊅ M5√	
43	version	_		
	VC131011	43	##P54	It cannot be modified.
	Power board	AGM	#YEN#	NOTE: Detail version refers to the actual display.
44	software version	44	U 175	
			U 1 1 2	

3.5.1 Battery voltage customized logic.

For the above items7-16 and 33-36, please follow the below rules strictly.

- In the 24V input voltage system, the following rules must be followed when modifying the
 parameter values in the user battery type for a Lead-acid battery.
- A. Over Voltage Disconnect Voltage ≥ Over Voltage Reconnect Voltage+0.5V
- B. Over Voltage Disconnect Voltage > Charging Limit Voltage ≥ Equalize Charging Voltage ≥ Boost Charging Voltage ≥ Float Charging Voltage > Boost Voltage Reconnect Voltage
- C. Low Voltage Reconnect Voltage ≥ Low Voltage Disconnect Voltage+0.5V
- D. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage(21.2V)
- E. Under Voltage Warning Reconnect Voltage-0.5V ≥ Under Voltage Warning Voltage ≥ Discharging Limit Voltage(21.2V)
- F. Boost Voltage Reconnect Voltage > Low Voltage Disconnect Voltage
- In the 48V input voltage system, the following rules must be followed when modifying the parameter values in the user battery type for a Lead-acid battery.
- A. Over Voltage Disconnect Voltage ≥ Over Voltage Reconnect Voltage+1V
- B. Over Voltage Disconnect Voltage > Charging Limit Voltage ≥ Equalize Charging Voltage ≥ Boost Charging Voltage ≥ Float Charging Voltage > Boost Voltage Reconnect Voltage
- C. Low Voltage Reconnect Voltage ≥ Low Voltage Disconnect Voltage+1V
- D. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage (42.4V)
- E. Under Voltage Warning Reconnect Voltage-1V ≥ Under Voltage Warning Voltage ≥ Discharging Limit Voltage(42.4V)
- F. Boost Voltage Reconnect Voltage > Low Voltage Disconnect Voltage
- In the 24V input voltage system, the following rules must be followed when modifying the parameter values in the user battery type for a lithium battery.
- A. Over Voltage Disconnect Voltage ≥ Over Voltage Reconnect Voltage+0.5V
- B. Over Voltage Disconnect Voltage > Over Voltage Reconnect Voltage = Charging Limit Voltage ≥
 Equalize Charging Voltage = Boost Charging Voltage > Float Charging Voltage > Boost Voltage
 Reconnect Voltage
- C. Low Voltage Reconnect Voltage ≥ Low Voltage Disconnect Voltage+0.5V
- D. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage(21.2V)
- E. Under Voltage Warning Reconnect Voltage-0.5V ≥ Under Voltage Warning Voltage ≥ Discharging Limit Voltage(21.2V)

- F. Boost Voltage Reconnect Voltage > Low Voltage Reconnect Voltage
- 4) In the 48V input voltage system, the following rules must be followed when modifying the parameter values in the user battery type for a lithium battery.
- A. Over Voltage Disconnect Voltage ≥ Over Voltage Reconnect Voltage+1V
- B. Over Voltage Disconnect Voltage > Over Voltage Reconnect Voltage = Charging Limit Voltage ≥
 Equalize Charging Voltage = Boost Charging Voltage > Float Charging Voltage > Boost Voltage
 Reconnect Voltage
- C. Low Voltage Reconnect Voltage ≥ Low Voltage Disconnect Voltage+1V
- D. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage(42.4V)
- E. Under Voltage Warning Reconnect Voltage-1V ≥ Under Voltage Warning Voltage ≥ Discharging Limit Voltage(42.4V)
- F. Boost Voltage Reconnect Voltage > Low Voltage Reconnect Voltage

The lithium battery's voltage parameters must be set according to the voltage parameters of BMS.

3.5.2 Battery control strategy

When the lithium battery protocol and parameters setting accord with anyone of the following cases, the table (1) control strategy are followed.

- Adopt PYLONTECH lithium battery protocol: Set item 40 "PRO" as "11".
- Adopt non-PYLONTECH lithium battery protocol: Set item 40 "PRO" as the current lithium battery
 protocol number (refer to the *UP-Hi Attachment* for different lithium battery protocol numbers), and
 set item 41 "BEN" as "ON" (enable the BMS function).

> Table (1): Control strategy

No.	Condition	Control strategy
1	The real utility input voltage is within the available utility range (detail range refers to <u>7</u> Specifications).	The inverter/charger limits the battery discharge according to the BMS "discharge current limit". No BMS "discharge current limit", the inverter/charger limits the battery discharge according to the limit current set by the customer.
2	No utility or the utility input voltage is beyond the available utility range.	The inverter/charger limits the battery discharge according to the limit current set by the customer.
3	Battery charge is requested.	The inverter/charger charges the battery per the charging current of the BMS.

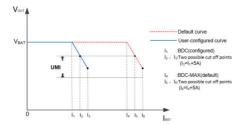
No.	Condition	Control strategy
4	The BMS sends an exit The inverter/charger exits the battery charging and re charge command. normal working mode.	
5	BMS prohibits discharge (includes over- temperature, over discharge, cell low voltage etc.)	The PV supplies power to loads when the PV is available. The inverter/charger automatically switches to the utility mode to supply power to loads when there is no PV. Note: When the BMS resumes normal discharge, the previous working mode is restored.
6	Communication fails.	The inverter/charger automatically enters the no-battery mode, and the LCD display the battery voltages set by the customer. Note: Under the no-battery mode, the inverter/charger does not charge or discharge the battery in any way.
7	Read the charge voltage limit and the discharge voltage limit from the BMS *	The battery voltages are transformed per the Table (2): Battery voltage transformation. The transformed voltages are adopted to control the charging or discharging, and displayed on the local LCD. Note: The BMS communication is normal, while the charge voltage limit and the discharge voltage limit cannot be read from the BMS successfully, the inverter/charger will charge or discharge per the battery voltages set by the customer.
8	Read the charge current limit and the discharge current limit from the BMS	The inverter/charger limits the device charge/discharge current per the read value.

- When adopting the PYLONTECH lithium battery protocol, the battery mode (BTS) cannot be set.
- When the customer sets the lithium battery protocol ("PRO" parameter) to the non-PYLONTECH protocol, the inverter/charger exits the above control strategy and works per the customer setting.
- Adopt the non-PYLONTECH protocol and disable the BMS function (namely, item 41
 "BEN" is set to "OFF"), the inverter/charger exits the above control strategy and
 works per the customer setting.
- ★ For PYLONTECH lithium battery, refer to its battery specification for the charge voltage limit and the discharge voltage limit. Whether other lithium batteries are equipped with the two limit voltage, please refer to detail battery specification.

> Table (2): Battery voltage transformation

No.	Code	Battery voltage	Transformation
1	OVD	Over Voltage Disconnect Voltage	Charge voltage limit + 0.3*Level
2	CLV	Charge Voltage Limit Voltage	Charge voltage limit (namely, the battery pack over voltage warning voltage)
3	OVR	Over Voltage Reconnect Voltage	Charge voltage limit
4	ECV	Equalize Charging Voltage	Charge voltage limit -0.1* Level
5	BCV	Boost Charging Voltage	Charge voltage limit -0.1* Level
6	FCV	Float Charging Voltage	Charge voltage limit -0.1* Level
7	BVR	Boost Voltage Reconnect Voltage	Charge voltage limit -0.8* Level
8	LVR	Low Voltage Reconnect Voltage	Discharge voltage limit +0.7* Level
9	UVR	Under Voltage Reconnect Voltage	Discharge voltage limit +0.7* Level
10	UVW	Under Voltage Warning Voltage	Discharge voltage limit +0.4* Level
11	LVD	Low Voltage	Discharge voltage limit (namely, the battery
- 11	LVD	Disconnect Voltage	pack under voltage warning voltage)
12	DLV	Discharge Voltage Limit Voltage	Discharge voltage limit -0.7* Level

Note: "Level" is 1 for 12V system, 2 for 24V system, and 4 for 48V system.


3.6 Battery discharge current limit

The function is suitable for the current limiting requirements of lithium batteries.

Abbreviation:

V _{BAT}	Battery voltage
V _{out}	Inverter output voltage
I _{BAT}	Actual battery current
UMI	Utility low voltage disconnection voltage
BDC	Battery discharge current limit value(Setting value)
BDCMAX	Max. Battery discharge current limit value

V-I curve:

When the $V_{OUT} \le UMI$ or $I_{BAT} \ge BDC+5A$, the inverter will be turned off. If the utility is connected, the utility will supply power to the load.

4 Protections

No.	Protection	Instruction
1	PV limit current	When the charging current of the PV array exceeds its rated current, it will be charged at the rated current. NOTE: When the charging current exceeds the PV array's rated current, ensure the PV open-circuit voltage no exceed the "maximum PV open-circuit voltage." Otherwise, the inverter/charger may be damaged.
2	PV reverse polarity	Fully protect against PV reverse polarity, correct the wire connection to resume the regular operation.
3	Night reverse charging	Prevent the battery from discharging through the PV module at night.
4	Utility input over voltage	In the 110V/120VAC system, when the utility voltage exceeds 132V (configurable), it will stop utility charging/discharging. In the 220V/230VAC system, when the utility voltage exceeds 264V (configurable), it will stop utility charging/discharging.
5	Utility input under voltage	In the 110V/120VAC system, when the utility voltage is less than 88V (configurable), it will stop utility charging/discharging. In the 220V/230VAC system, when the utility voltage is less than 176V (configurable), it will stop utility charging/discharging.
6	Utility input over current	Utility input current higher than a specified value, the device will go into protection mode automatically. Press the over-current protection device to resume working when the utility input current decreases to the expected value.
7	Battery reverse polarity	When the PV array and utility are not connected with the inverter/charger, reverse battery polarity will not damage the inverter/charger. It will resume normal running after the mis-wiring is corrected.
8	Battery over voltage	When the battery voltage reaches the Over Voltage Disconnect Voltage point, the inverter/charger will stop charging the battery to prevent battery damage due to over charged.
9	Battery over discharge	When the battery voltage reaches the Low Voltage Disconnect Voltage point, the inverter/charger will automatically stop discharging the battery to prevent battery damage due to over discharge.
10	Load output short circuit	When a short circuit occurs at the load output terminal, the output will be turned off immediately. The output will then be automatically restored after a delay (the first time delay for 5s, the second time delay for 10s, the third time delay for 15s). If the short circuit remains after three times delay, clear the fault and then restart the inverter/charger to resume work.

No.	Protection	Instruction				
	Overload	Times of overload	1.3 1.5			
11		Continuance	10S 5S			
		Recover three times	The first time delay for 5s, the second time delay for 10s, the third time delay for 15s			
12	Inverter/charger overheating	The inverter/charger will stop charging/discharging when the internal temperature is too high and will resume charging/discharging when the temperature is recovered to normal.				

5 Troubleshooting

5.1 Status reference

Туре	Code	Instruction	Battery Frame Blink	Indicator	Buzzer	Fault Indicator
B.	POV	PV over voltage		PV charge fast flashing	Alarm	On Solid
PV faults	POC	PV over current				
	PNA	PV voltage abnormal				
	PLL	PV Power low				
	POT	PV over temperature				
	ШLV	Utility low voltage		Utility fast flashing		
Utility faults	אסח	Utility over voltage		Utility fast flashing	Alarm	On Solid
	LIF A	Utility frequency abnormal	-	Utility fast flashing	Alarm	On Solid
	EL 1	Battery low voltage	Flashing			
	EOA	Battery over voltage	Flashing			
	EOJ	Battery over discharge	Flashing			
Battery faults	ECP	Battery charging warning or protection	Flashing		1	
	בְּי ב	Cell over voltage ⁽¹⁾	Flashing			
	בחא	Cell under voltage ⁽¹⁾	Flashing			
	[LT	Cell low temperature ⁽¹⁾	Flashing			
	COT	Cell over temperature ⁽¹⁾	Flashing			
	0\A	Output voltage abnormal	1	Inverter fast flashing	Alarm	On Solid
Output faults	0SC	Output short circuit	ł	Inverter fast flashing	Alarm	On Solid
	00L	Output overload	1	Inverter fast flashing	Alarm	On Solid
	_HD\	Hardware over voltage				
	MOV	Bus over voltage				
Others	MLV	Bus under voltage	-			
Others	OTP	Heat sink over temperature	1		1	1
	LTP	Battery low temperature				

Туре	Code	Instruction	Battery Frame Blink	Indicator	Buzzer	Fault Indicator
Others	[FA	Communication fault alarm				
	EM5	Other faults of the battery management system	Flashing			
	NTE	BMS sensor fault	Flashing	_	_	_
BMS	EME	BMS communication error ⁽²⁾	_	_	_	_
status	8FC	BMS full charge ⁽³⁾	_	_	_	_
	850	BMS charge protection	_	_	_	_
	85D	BMS discharge protection	_	_	_	_
	ELE	BMS limit current ⁽⁴⁾	_	_	_	_

- (1) Faults of ☐ `\/☐ `\/☐ T/☐ T are read from the BMS directly.
- (2) Enable the BMS function first (Set item BEN to ON). When the BMS communication fails, the UP-Hi automatically enters the no-battery mode and displays BME.
- (3) When the battery is fully charged and the SOC reaches 100%, the charging process is stopped and the BFC is displayed (without indicator and buzzer warning).
- (4) Enable the BMS function first (Set item BEN to ON). After reading the BMS charge/discharge current threshold, the threshold value is adopted for working. The 12 local voltage points and the threshold value cannot be set.

5.2 Solutions

Faults	Solutions		
Detter and the se	Check whether the battery voltage is too high and disconnect the PV		
Battery over voltage	modules.		
Battery over	Waiting for the battery voltage to resume to or above LVR point (low		
discharge	voltage reconnect voltage) or changing the power supply method.		
Datter a succession	When the battery temperature declines to the overheating recovery		
Battery overheating	temperature or lower, the inverter/charger will resume working.		
Davisa avadastias	When the device temperature declines to the overheating recovery		
Device overheating	temperature or lower, the inverter/charger will resume working.		
	① Please reduce the number of AC loads.		
Output overload	② Restart the device to recover the load output.		
	① Check carefully loads connection, clear the fault.		
Output short circuit	② Restart the device to recover the load output.		

6 Maintenance

The following inspections and maintenance tasks are recommended at least two times per year for the best performance.

- · Make sure the inverter/charger is firmly installed in a clean and dry ambient.
- Make sure no block on airflow around the inverter/charger. Clear up any dirt and fragments on the radiator
- Check all the naked wires to ensure insulation is not damaged for serious solarization, frictional wear, dryness, insects or rats, etc. Repair or replace some wires if necessary.
- Tighten all the terminals. Inspect for loose, broken, or burnt wire connections.
- Check and confirm that LED or LCD is consistent with the actual operating. Pay attention to any
 troubleshooting or error indication. Then, take the necessary corrective action.
- Confirm that all the system components are ground connected tightly and correctly.
- Confirm that all the terminals have no corrosion, insulation damaged, high temperature, or burnt/discolored sign. Then, tighten terminal screws to the suggested torque.
- · Check for dirt, nesting insects, and corrosion. If so, clear up in time.
- Check and confirm the lightning arrester is in good condition. Replace a new one in time to avoid damaging the inverter/charger and even other equipment.

Risk of electric shock! Ensure that all the power is turned off before the above operations, and then follow the corresponding inspections and operations.

7 Specifications

Item	UP2000-HM6021	UP3000-HM10021	UP3000-HM5041	UP3000-HM8041	
Battery Rated Voltage	24	IVDC	48VDC		
Battery Work Voltage Range	21.6~	-32VDC	43.2	2~64VDC	
Temperature Compensation		-3mV/°C/	2V(Default)		
Battery Maximum Charging Current	60A	100A	50A	80A	
Inverter Output					
Continuous Output Power	2000W	3000W	3000W	3000W	
3-second Transient Surge Output Power	4000W	6000W	6000W	6000W	
Inverter Output Voltage		110VAC(-3%~+3%)	, 120VAC(-10%~+3%)		
Inverter Frequency		50/6	0±0.2%		
Output Voltage Waveform		Pure S	ine Wave		
Load Power Factor		0.2-1(Load power ≤ C	ontinuous output power)		
Output Voltage Harmonic Distortion Rate		≤5%(Res	sistive load)		
Maximum Load Efficiency	88%	88%	90%	90%	
Maximum Inverter Efficiency	90%	92%	92%	92%	
Switch Response Time		Switch Response Time	e – Utility to Inverter:10ms		
Switch Response Time	Switch Response Time – Inverter to Utility:15ms				
Utility Input					
Utility Voltage	88VAC~132VAC (Default), 80VAC~140VAC(Programmable)				
Uitility Frequency	40∼65Hz				
Utility Maximum Charging Current	60A	80A	40A	40A	

Solar Controller						
PV Maximum Open-circuit Voltage	250V [©] , 220V [©]					
MPPT Voltage Range		60^	-200V			
PV Maximum Input Power	2000W	3000W	3000W	4000W		
rv Maximum input rower	(Note: For the curve of PV	Maximum Input Power Vs. PV N	Maximum Open-circuit Voltage	e, see chapter Appendix1.)		
PV Maximum Charging Power	1725W	2875W	2875W	4000W		
PV Maximum Charging Current	60A	100A	50A	80A		
Equalize Charging Voltage	29.2V(A0	GM default)	58.4V(A	AGM default)		
Boost Charging Voltage	28.8V(AGM default)		57.6V(AGM default)			
Float Charging Voltage	27.6V(A0	GM default)	55.2V(AGM default)			
Low Voltage Disconnect Voltage	21.6V(AGM default)		43.2V(AGM default)			
MPPT Maximum Efficiency	≥99.5%					
General						
Surge Current★	50A	60A	56A	95A		
	<1.6A	<1.6A	<1.2A	<0.8A		
No-load Losses	(No PV and utility, AC out is on, fan stops@24V input)		(No PV and utility, AC out is on, fan stops@48V input)			
01	<1.2A	<1.0A	<0.7A	<0.6A		
Standby Current	(No PV and utility, AC out is off, fan stops@24V input)		(No PV and utility, AC out is off, fan stops@48V input)			
Mechanical Parameters						
Dimension (L x W x H)	607.5x381.6x127mm	642.5x381.6x149mm	642.5x381.6x149mm	642.5x381.6x149mm		
Mounting Size (L x W)	585x300mm	620x300mm	620x300mm	620x300mm		
Mounting Hole Size	Ф10mm	Ф10mm	Ф10mm	Ф10mm		
Net Weight	15kg	19kg	19kg	19kg		

① At minimum operating environment temperature

② At 25°C environment temperature

\bigstar Only UP-Hi with anti-surge function has the surge current parameter.

Item	UP2000-HM6022	UP3000-HM10022	UP3000-HM5042	UP5000-HM8042	
Battery Rated Voltage	24VDC		48VDC		
Battery Work Voltage Range	21.6	6~32VDC	43	3.2~64VDC	
Temperature Compensation		-3mV/°C	C/2V(Default)		
Battery Maximum Charging Current	60A	100A	50A	80A	
Inverter Output					
Continuous Output Power	2000W	3000W	3000W	5000W	
3-second Transient Surge Output Power	4000W	6000W	6000W	8000W	
Inverter Output Voltage		220VAC(-6%~+3%	s), 230VAC(-10%~+3%)		
Inverter Frequency	50/60±0.2%				
Output Voltage Waveform	Pure Sine Wave				
Load Power Factor	0.2-1(Load power ≤ Continuous output power)				
Output Voltage Harmonic Distortion Rate		≤3%(Re	esistive load)		
Maximum Load Efficiency	91%	91%	90%	91%	
Maximum Inverter Efficiency	93%	93%	93%	93%	
Switch Response Time	Switch Response Time – Utility to Inverter:10ms				
Switch Response Time	Switch Response Time – Inverter to Utility:15ms				
Utility Input					
Utility Voltage		176VAC~264VAC (Default),	90VAC~280VAC(Programn	nable)	
Uitility Frequency		40	~65Hz		
Utility Maximum Charging Current	60A(When the Utility input voltage is 90VAC~180VAC, the	80A(When the Utility input voltage is 90VAC~180VAC, the Max. utility charge	40A(When the Utility input voltage is 90VAC~180VAC, the	60A(When the Utility input voltage is 90VAC~180VAC, the Max. utility charge current is	
	Max. utility charge	current is 40A)	Max. utility charge	30A)	

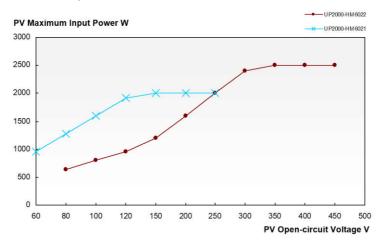
	current is 30A)		current is 20A)	
Solar Controller				
PV Maximum Open-circuit Voltage	450V [⊕] , 395V [⊕]			500V [©] 440V [©]
MPPT Voltage Range		80~350V		120~400V
PV Maximum Input Power	2500W	4000W	4000W	4000W
PV Maximum input Power	(Note: For the curve of	PV Maximum Input Power Vs. F	PV Maximum Open-circuit V	oltage, see chapter Appendix1.)
PV Maximum Charging Power	1725W	2875W	2875W	4000W
PV Maximum Charging Current	60A	100A	50A	80A
Equalize Charging Voltage	29.2V(A	AGM default)	58.4\	/(AGM default)
Boost Charging Voltage	28.8V(AGM default)		57.6V(AGM default)	
Float Charging Voltage	27.6V(AGM default)		55.2V(AGM default)	
Low Voltage Disconnect Voltage	21.6V(A	AGM default)	43.2V(AGM default)	
MPPT Maximum Efficiency	≥99.5%			
General				
Surge Current★	50A	60A	56A	95A
No-load Losses		<1.8A t is on, fan stops@24V input)	<1.2A (No PV and utility, AC out is on, fan stops@48V input)	
		<1.2A	<0.7A	
Standby current	(No PV and utility, AC ou	t is off, fan stops@24V input)	(No PV and utility, AC out is off, fan stops@48V input)	
Mechanical Parameters				
Dimension (L x W x H)	607.5x381.6x127mm	642.5x381.6x149mm	607.5x381.6x149mm	642.5x381.6x149mm
Mounting Size (L x W)	585x300mm	620x300mm	585x300mm	620x300mm
Mounting Hole Size	Ф10mm	Ф10mm	Ф10mm	Ф10mm
Net Weight	15kg	19kg	18kg	19kg

① At minimum operating environment temperature

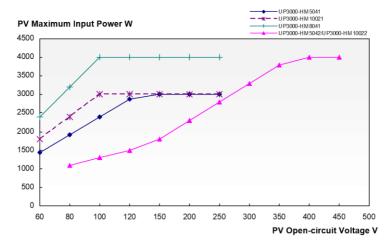
② At 25°C environment temperature

★ Only UP-Hi with anti-surge function has the surge current parameter.

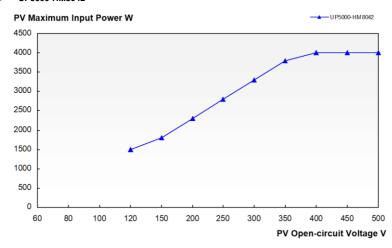
Environment Parameters


Enclosure	IP30		
Relative Humidity	< 95% (N.C.)		
Work Temperature Range	-20℃~50℃		
Storage Temperature Range	-25℃~60℃		
Altitude	<5000m (If the altitude exceeds 1000 meters, the actual output power is reduced according to IEC62040.)		

Appendix 1 PV Maximum Open-circuit Voltage V_S PV Maximum Input Power


Detailed PV Maximum Open-circuit Voltage and PV Maximum Input Power is shown as below:

Model	PV Minimum Working Voltage	PV Maximum Open-circuit Voltage	PV Maximum Input Power
UP2000-HM6021	60V	250V(At minimum temperature) 220V(25°C)	2000W
UP2000-HM6022	80V	450V(At minimum temperature) 395V(25°C)	2500W
UP3000-HM5041	60V	250V(At minimum temperature) 220V(25°C)	3000W
UP3000-HM5042	80V	450V(At minimum temperature) 395V(25°C)	4000W
UP3000-HM8041	60V	250V(At minimum temperature) 220V(25°C)	4000W
UP3000-HM10021	60V	250V(At minimum temperature) 220V(25°C)	3000W
UP3000-HM10022	80V	450V(At minimum temperature) 395V(25°C)	4000W
UP5000-HM8042	120V	500V(At minimum temperature) 440V(25°C)	4000W


UP2000-HM6021, UP2000-HM6022

> UP3000-HM5041, UP3000-HM5042, UP3000-HM8041, UP3000-HM10021, UP3000-HM10022

UP5000-HM8042

Any changes without prior notice! Version number: V2.6

HUIZHOU EPEVER TECHNOLOGY CO., LTD.

Tel: +86-752-3889706

E-mail: info@epever.com Website: www.epever.com