

Inverter/charger

User Manual

UC3522-1250P20C, UCP3522-1250P20C UC3542-0650P20C, UCP3542-0650P20C UC5542-1050P20C, UCP5542-1050P20C UC6042-1250P20C

Contents

1
5
6
6
9
12
13
15
15
16
16
20
20
21
22
22
23
24
25
25
48
56
61

	3.1 Attention	61
	3.2 Wire and breaker size	62
	3.3 Mounting the inverter/charger	64
	3.4 Wiring the inverter/charger	66
	3.5 Operate the inverter/charger	76
4١	Working modes	78
	4.1 Abbreviation	78
	4.2 Off-Grid working modes	79
	4.2.1 Battery mode	79
	4.2.2 No battery mode	85
	4.3 On-Grid working modes	86
	4.3.1 On-Grid operation procedure	86
	4.3.2 Battery mode	87
	4.3.3 No battery mode	89
5 (Operation for built-in WiFi module	90
	5.1 Turn on the built-in WiFi module	90
	5.2 Remote monitor via APP	91
6 I	Protections	99
7 -	Troubleshooting	103
	7.1 Battery faults	103
	7.2 PV faults	105
	7.3 Inverter faults	106
	7.4 Utility faults	108
	7.5 Load faults	109
	7.6 Other faults for single inverter/charger	109
	7.7 BMS faults	110

8 Maintenance	111
9 Specifications	112
9.1 UC-P20C Series	112
9.2 UCP-P20C Series	118
10 Dimensions	122
11 Appendix	126
11.1 Appendix1 Abbreviations index	126
11.2 Appendix 2 Battery state instruction	129

Important Safety Instructions

Please keep this manual for future review.

This manual contains all the safety, installation, and operation instructions for the UC/UCP-P20C series inverter/charger (hereinafter referred to as "inverter/charger").

1. Explanation of symbols

To ensure the user's personal and property safety while using this product, relevant information is provided in the manual and highlighted with the following symbols.

Please read the relevant texts carefully when you encounter the following symbols in the manual.

Symbol	Definition
Tip	Indicates recommendation for reference.
0	IMPORTANT: Indicates an important reminder during the operation, fail to do so may result in an equipment error alarm.
<u>^</u>	CAUTION: Indicates potential hazards which, if not avoided, may cause the device damage.
4	WARNING: Indicates the danger of electric shock which, if not avoided, will result in damage to equipment or electric shock/injury to personnel.
	WARNING HOT SURFACE: Indicates the risk of high temperature, if not avoided, would cause burns to personnel.
[]i	Read the user manual carefully before any operation.

4	The entire system should be installed by professional and technical personnel.
WARNING:	, , , , , , , , , , , , , , , , , , , ,

2. Requirements for professional and technical personnel

- Professionally trained.
- · Familiar with related safety regulations of the electrical system.
- · Read this manual carefully and master related safety instructions.

3. Professional and technical personnel is allowed to

- · Install the inverter/charger to a specified location.
- · Conduct trial operations for the inverter/charger.
- Operate and maintain the inverter/charger.

4. Safety instructions before installation

() IMPORTANT	When receiving the inverter/charger, please check if there is any damage during transportation. If you find any problem, please contact the transportation company, our local distributor or our company in time.		
CAUTION	When installing or moving the inverter/charger, follow the instructions in the manual. When installing the inverter/charger, end-users must evaluate whether the operation area exists arc danger.		
WARNING	Keep the inverter/charger out of reach of children.		

Before installation, ensure the inverter/charger has no electrical connection.
 Ensure enough heat dissipation space for the inverter/charger before

• Do not install the inverter/charger in humid, salt spray, corrosive, greasy,

5. Safety instructions for mechanical installation

installation.

	flammable, explosive, dust accumulative or other severe environments.				
6. Safety instruct	6. Safety instructions for electrical connection				
CAUTION	Check whether wiring is tight to avoid the danger of heat accumulation due to loose connections. The inverter/charger shell shall be connected to the ground. The cross-sectional area of the connection wire should not be less than 4mm². A fast-acting fuse or circuit breaker, whose rated current is twice the inverter/charger rated input current, should be used between the battery and the inverter/charger. Do not install the inverter/charger and the flooded lead-acid battery in the closed space. The flooded lead-acid battery generates flammable gas and may cause a fire if the connection terminals spark.				
WARNING	Do not connect the AC output terminal to other power sources or Utility. Otherwise, the inverter/charger will be damaged. The AC output terminal is only for the load connection, turn off the inverter/charger when connecting loads. It is strictly forbidden to connect a transformer or a load with a surge power (VA) exceeding the overload power at the AC output port. Otherwise, the inverter/charger will be damaged. Both the utility input and AC output are of high voltage, do not touch the wiring to avoid electric shock.				

7. Safety instructions for inverter/charger operation

WARNING HOT When the inverter is working, it generates a lot of heat and the shell temperature is very high, do not touch it and keep it far away from the materials and equipment that are susceptible to the high temperature.

SURFACE

CAUTION

- When the inverter/charger is working, do not open its shell for any operation.
- When troubleshooting the fault that affects the safety performance of the inverter/charger or disconnecting the DC input, turn off the inverter/charger switch and operate it after the LCD is completely OFF.

8. The dangerous operations that could cause an electric arc, fire or explosion inside the inverter/charger

- · Touch the end of a potentially live cable that has not been insulated.
- Touch the wiring copper busbars, terminals or internal components of the inverter/charger that might be electriferous.
- The connection of the power cable is loose.
- · Screws or other spare parts accidentally fall into the inverter/charger.
- Incorrect operation by untrained non-professional personnel.

WARNING

Once an accident occurs, it must be handled by professional and technical personnel.

Improper operations would cause more serious accidents.

9. Safety instructions for stopping the inverter/charger

- · Firstly, turn off the AC output and disconnect the utility input. Then, turn off the DC switch.
- The internal conductive components should not be touched until the inverter/charger has been disconnected from the input and output cables for 10 minutes.
- The inverter/charger does not contain repair parts internally, if you need repair service, please contact our after-sales service personnel.

WARNING

It's dangerous to touch or open the shell for maintenance when the equipment is powered off within 10 minutes.

10. Safety instructions for inverter/charger maintenance

It is recommended to check the inverter/charger with testing equipment to ensure there is no voltage
at the input terminals or no current on the input and output cables.

- When conducting the electrical connection and maintenance, post a temporary warning sign or put
 up barriers to prevent unrelated personnel from entering the electrical connection or maintenance
 area.
- Improper maintenance of the inverter/charger may cause personal injury or equipment damage.
- It is recommended to wear an anti-static wrist strap or to avoid unnecessary contact with the circuit board

The safety mark, warning label and rating plate on the inverter/charger should be clearly visible. not removed or covered.

11. Working temperature

- Working temperature range: -20°C to +50°C (when the working temperature exceeds 30°C, the charging power and load power will be reduced appropriately. 100% load output is not supported.)
- Storage temperature range: -25°C to +60°C (No sharp temperature changing)
- Relative humidity: < 95% (Non-condensing)
- Altitude: <4,000m (If the altitude exceeds 2,000 meters, the actual output power is reduced appropriately.)

It is strictly prohibited to use the inverter/charger in the following places. And our company shall not be liable for any damage caused by using it in an inappropriate place.

- Do not install the inverter/charger in humid, salt spray, corrosive, greasy, flammable, explosive, dust accumulative or other severe environments. Avoid direct sunlight and rain infiltration for outdoor installation.
- Do not install the inverter/charger and flooded lead-acid battery in a sealed space.
 Otherwise, a fire may cause when the terminals produce sparks, and it ignites the flammable gas released by the battery.

Disclaimers

The warranty does not apply to the following conditions:

- Damage caused by improper use or inappropriate environment (It is forbidden to install the inverter/charger in humid, salt spray, corrosive, greasy, flammable, explosive, dust accumulative or other severe environments).
- The actual current/voltage/power exceeds the limit value of the inverter/charger.
- Damage caused by working temperature exceeding the rated range.
- Electric arc, fire, explosion and other accidents caused by failure to follow the inverter/charger labels
 or manual instructions.
- Unauthorized disassembly and maintenance of the inverter/charger.
- · Damage caused by force majeure.
- · Damage occurred during transportation or handling.

1 General Information

1.1 Overview

UC/UCP-P20C series, upgraded hybrid inverter/chargers that support utility charging, oil generator charging, solar charging, utility output and inverter output. The inverter/charger supports parallel operation for multiple units (12 units in standard application, more than 12 units need to be customized) in single phase and three phase, with 220VAC or 380VAC output respectively.

With the functions of dual outputs, main and secondary power-off, the inverter/charger can enter the low power mode according to the battery voltage, and power saving mode (AC mode) subject to output power. Both low-power and power saving modes can be enabled or disabled by the LCD.

The DSP chip in the product with an advanced control algorithm brings high response speed and conversion efficiency. In addition, this product adopts an industrial design to ensure high reliability and features multiple charging and output modes.

Adopt the three-stage charging method (bulk charging, constant charging and float charging) to ensure battery safety.

The 3.5-inches touchable color LCD shows the operational status and full parameters.

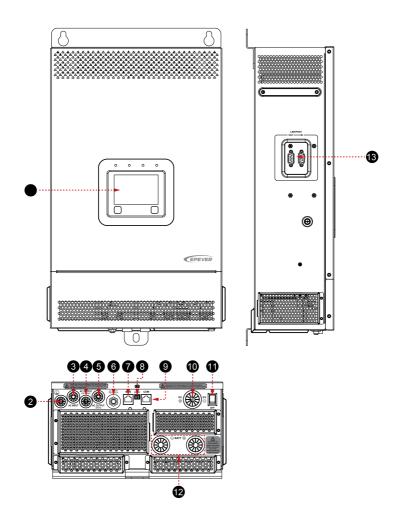
The communication interface with the standard Modbus protocol allows end-users to expand their applications and is suitable for different monitoring requirements.

The new optimized MPPT technology can track the PV array's maximum power point in any sunlight conditions and obtain the maximum PV panel energy in real time. Two PV inputs (connected separately or in parallel) is supported, which improves the PV utilization.

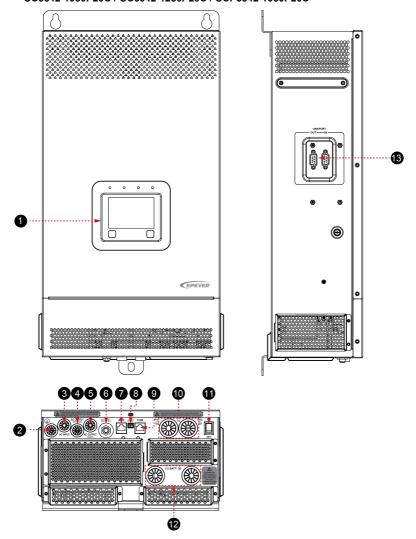
The AC to DC charging units adopt the full digital PFC and dual closed-loop voltage-current control, the input power factor is close to 1.

The DC to AC inverting units are based on fully digital control and adopt the advanced SPWM technology, converting DC into a pure sine wave output. It is widely used in household appliances, power tools, industrial equipment, electronic audio and video, and other AC loads. End-users can choose energy sources according to actual needs to maximize solar energy utilization and flexibly take the Utility as a supplement in the hybrid system. This product can improve the power supply reliability rate of the system and is suitable for residential areas, schools, medical facilities, government buildings, mosques and religious sites, buts and areas with unstable power supply.

Features

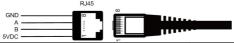

- · New fully digitalized energy storage inverter/charger for multi-energy management
- · Applicable for pure off-grid / backup power / self-generation and self-consumption / on-grid situation.
- · Supporting battery mode or non-battery mode.
- Non-battery mode: solar power (main) and utility (auxiliary) power the load at the same time.
- Advanced SPWM technology and pure sine wave output, supporting dual AC outputs.
- Excess energy fed into the grid after some requirements being satisfied (it does not meet the relevant on-grid certification requirements).
- Parallel operation in single phase or three phase for 12 units in standard application, up to 16 units^①.
- · Higher PV input current to adapt to the PV modules with higher power.
- · PFC technology reduces the demand on the power grid capacity.
- · Advanced MPPT technology, with maximum tracking efficiency higher than 99.5%.
- Some models support two PV inputs to improve PV utilization².
- Supporting charging from multiple types of generators³.
- · Battery voltage controls the dry contact to turn on/off the external equipment such as oil generator.
- Total battery charging/discharging current settings to be compatible with different batteries.
- · Maximum utility charging current settings to flexibly configure utility charging power.
- Low power mode and power saving mode activated by battery voltage and output power respectively.
- With the function of historical data recording^①, up to 25,000 records. Upon reaching full capacity, the storage chip sectors (4,096 records per sector) are cyclically overwritten. The interval for recording historical data is configurable.
- · Multiple LED indicators show system status in real-time.
- · One-button control of AC output.
- The 3.5-inches touchable color LCD for better status monitoring in real-time.
- RS485 communication interface with optional WiFi, Bluetooth, TCP or 4G modules for remote monitoring.
- With a built-in WiFi module, the inverter/charger can be remotely monitored through the APP.
- · Three-stage charging method to ensure battery safety.
- · Lithium battery communication port to perform the safe charging and discharging.

- · Comprehensive electronic protections.
- · Anti-reverse connection protection for the battery input and PV input.
- Operating temperature ranging from -20°C to +50°C to provide wider application scopes.
- IP20 enclosure design with anti-dust mesh (Dust removal is required regularly, for specific requirements, please refer to Chapter 8 Maintenance).
- With the pay-as-you-go function, the inverter/charger can be locked or unlocked according to the
 user's payment situation, which can be better applied to leasing or installment payment scenarios to
 effectively protecting the legitimate rights and interests of lessors or sellers.
- ①If more than 12 units are connected in parallel, please contact our sales personnel for customization.


 For some models, this function is optional. If you need it, please specify before purchasing. To check whether the parallel connection port is optional, please refer to Chapter <u>9 Specifications</u>.
- ②Only the UC5542-1050P20C and UCP5542-1050P20C support two PV inputs for single MPPT tracking or two parallel MPPTs tracking, and increasing the PV maximum input current. When two PV arrays are independently input, set the "PVMode" as "Single." When two PV arrays connected in parallel as one input to the inverter/charger, set the "PVMode" as "Parallel" (both PV terminals of the inverter/charger need to be connected with PV input cables). For the product model with only one PV input, the "PVMode" is set as "Single" by default.
- ③When connecting a non-inverter generator, the charging current may not reach the rated power. It is recommended to connect an inverter generator. And when using the generator, the "ACmode" needs to be set to "Oil." For specific settings, please refer to chapter 2.5.1 Parameters list > 5. System (System parameter settings). To reduce the probability of overvoltage protection triggered by generator voltage waveform distortion when using the generator, it is recommended that the generator power is greater than 1.5 times the rated power of the inverter/charger.
- (4) Each historical record includes: Year, Month, Day, Hour, Minutes, Seconds, PV Maximum Voltage (V), PV Power (W), Utility Voltage (V), Utility Current (A), Utility Frequency (Hz), Utility Power (W), Load Voltage (V), Load Current (A), Load Power (W), Inverter Frequency (Hz), Battery Voltage (V), Battery Current (A), Battery SOC (%), Battery Temperature (°C), Boost Module Temperature (°C), INV Module Temperature (°C), Maximum BAT Volt (V) and Minimum BAT Volt (V).

1.2 Appearance

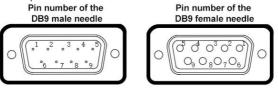
 UC3522-1250P20C / UCP3522-1250P20C / UC3542-0650P20C / UCP3542-0650P20C



• UC5542-1050P20C / UC6042-1250P20C / UCP5542-1050P20C

No.	Instruction	No.	Instruction
0	Color LCD (see chapter 2)	8	Dry contact interface ⁽²⁾
2	Grounding terminal	9	RS485 port (RJ45, with isolation design) ⁽³⁾ 5VDC/200mA
8	AC input port	0	PV terminals
4	AC output second load interface	0	Power switch
6	AC output main load interface	@	Battery terminals
6	Utility over-current protector		5 (4)
0	BMS port (RJ45, with isolation design) ⁽¹⁾	®	Parallel connection interface ⁽⁴⁾

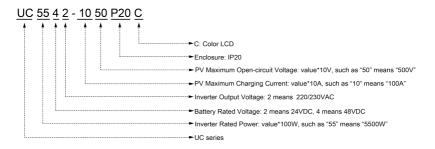
(1) This inverter/charger integrates a BMS-Link module. Connect the lithium battery to the BMS communication port directly, and set the BMS protocol number, the BMS protocols of different lithium battery manufacturers can be converted into our company's standard ones, which can realize the communication between the inverter/charger and the BMS of other manufacturers. Pin definition for the BMS port (RJ45) is as follows:

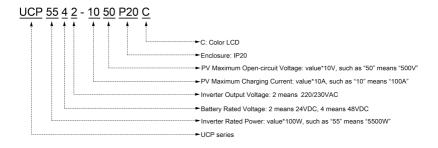

Pin	Pin Definition		Definition
1 +5VDC		5	RS485-A
2	+5VDC	6	RS485-A
3 RS485-B		7	GND
4	RS485-B	8	GND

Tip	Please go to EPEVER official website to check or download the currently supported
ıιρ	BMS manufacturers and the BMS parameters.

(2) Dry contact specification: 1A@125VAC.

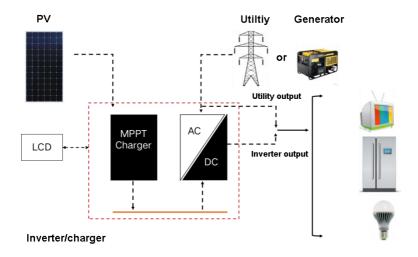
Function: The dry contact interface is connected with the generator switch to turn on/off the generator.


- (3) Connecting with the RS485 port, an optional WiFi, Bluetooth, TCP, or 4G module can remotely control the inverter/charger. Pin definition for the RS485 port is the same as the BMS port, see description in section (1) above.
- (4) Pin definition for the parallel connection interface is as follows:

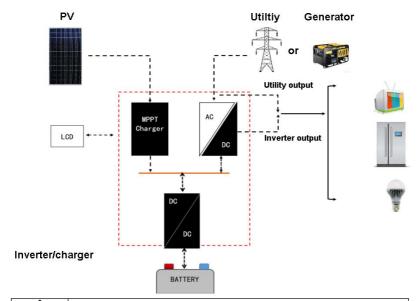

Pin	Definition	Pin	Definition
1	HFS-BUS	4	CAN-L
2	PFS-BUS	5	CAN-H
3	PS-GND	6/7/8/9	Reserved

1.3 Naming rules

• Naming rules for UC-P20C series



• Naming rules for UCP-P20C series



1.4 Connection diagram

• No battery mode

Battery mode

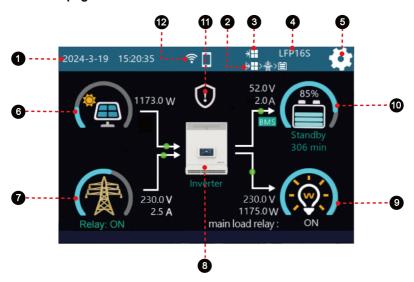
WARNING

AC loads shall be determined according to the output power of the inverter/charger. The load exceeding the maximum output power may damage the inverter/charger.

- CAUTION
- For different battery types, confirm the relevant parameters before powering on.
- · There are various types of oil generators with complex output conditions. It is recommended to use the inverter oil generator. If non-inverter oil generators are used, they must be tested in practice before use.

2 Interface

Note: The display screen can be viewed clearly when the angle between the end-user's horizontal sight and the display screen is within 90°. If the angle exceeds 90°, the information on the display screen cannot be viewed clearly.


2.1 Indicator

Indicator	Status	Instruction
	OFF	No PV input
PV	Solid green	PV normal
	Solid red	PV charging fault (PV1/PV2 over voltage)
	OFF	No inverter output
	Solid green	Inverter, charging, and bypass are normal
LOAD	0-11-44	Inverter fault (inverter over current/over voltage/under
	Solid red	voltage, output short-circuit, and over load)
	OFF	No utility input
	Solid green	Utility normal
GRID	Flashing green (0.5Hz)	Oil generator charging
	0 "	Utility charging fault (Utility over voltage/ over current/
	Solid red	under voltage/ frequency abnormal)
DUN	Flashing green (0.5Hz)	Normal communication
RUN	Solid red	Communication fault

2.2 Buttons

Buttons	Operation	Instruction
(N)	Click	Exit the current interface and return to home page.
(b)	Click	Turn ON/OFF the load switch. Short press this button to pop up the following prompt message. Click ON/OFF to turn on/off the load switch. If set to "OFF", it will automatically return to "ON" after restarting.

2.3 Home page

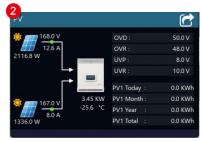
No.	Instruction			
0	2024-3-19 15:20:35	Displays the system time. Please set the system time correctly before use.		
2	⟩ 罪> ♠ >菖	Displays the battery discharge mode. For specific parameter settings, see 2.5.1 Parameter list > 5. System (System parameter setting). PV > BP > BT PV > BT > BP BP > PV > BT		
3	≯ ₩	Displays the battery charge mode. For specific parameter settings, see 2.5.1 Parameter list > 5. System (System parameter setting). Solar Solar > Grid Grid > Solar + Grid Grid > Solar		
4	LFP16S	Displays the current battery type. For specific parameter settings, see 2.5.1 Parameter list > 5. System (System parameter setting).		
6		Parameter setting icon, click to enter the password input interface, and you can customize the system parameters after entering the password correctly, see <u>2.5 Parameter settings</u> for specific operations.		
6	11730 W	 Displays total PV power. The arrow direction shows the energy flow direction of the PV input. The arc represents the percentage of the current PV generation power to the rated PV power generation. Display whether the PV module is working: indicates that the PV module is working normally, indicates that the PV module is not working). Click the PV icon to enter the PV real-time data interface, see 2.4.1 PV real-time data for details. 		

•	Relay: ON 2230 V 2.5 A	 Display utility input voltage and utility input current. The direction of the arrow shows the energy flow state of the utility input. The arc represents the percentage of (current utility consumption power/ On-Grid power) to rated AC output power. Display whether the utility is working normally: indicates that the utility is working normally, indicates that the utility is not working. Display the utility relay status: "Relay: ON" means the utility relay is connected, "Relay: OFF" means the utility relay is disconnected. Click the utility icon to enter the utility real-time data. For specific operations, see 2.4.2 Utility real-time data.
0	Inverter	Display the inverter/charger working status: "Inverter" indicates the inverter working status, "Grid" indicates the utility charging/ utility bypass and grid working status). Display the parallel status icon (it will be displayed when there are more than 2 inverter/chargers with successful parallel communication, and will not be displayed on a single inverter/charger). ★ Click the inverter/charger icon to enter the inverter/charger information interface. For specific operations, see 2.4.3 Inverter/charger real-time data.
•	23-50V 175-50V main load reley: ON	 Display the output voltage and output power of the load. The arrow direction indicates the energy flow state of the load. The arc represents the percentage of the current load power to the rated load power. Display the load status: indicates that the load is on, indicates that the load is off. "Main Load Relay" indicates the output status of the main load relay, "ON" means there is output, "OFF" means no output. Click the load icon to enter the load real-time interface. For specific operations, see 2.4.4 Load real-time data.

•	52.0 V 2.0 A S5% Standby 306 min	 Display the battery voltage and current in charging and discharging state. The arrow direction indicates the energy flow direction of the battery. Display the working status of the battery: indicates that the battery is charging and discharging normally, indicates that the battery is charging and discharging normally, indicates that working in battery-free mode. BMS indicates that the BMS communication is normal, indicates that BMS fault occurs. If the BMS communication is abnormal or the BMS is not connected, this icon is not displayed, and the "BMS communication abnormal" fault is displayed. Display battery SOC percentage value. The arc epresents the battery SOC percentage. Display charging status: "Standby, Equalizing, Floating, and Boosting". Display time: If it is charging or the remaining available discharging time is greater than 999 minutes, MAX is displayed. If the remaining available discharging time is less than or equal to 999 minutes, the specific number of minutes is displayed. Click the battery icon to enter the battery real-time interface. For specific 		
	operations, see <u>2.4.5 Battery real-time data</u> .			
•	<u>()</u>	Indicates that the current system is fault-free. Indicates that a fault has occurred in the current system. Click this icon to view real-time fault. For specific operations, see 2.4.6 Real-time error code. indicates turning on the built-in WIFI module. indicates turning on the 5V power supply of the inverter/charger's COM port, which can be connected to an external Bluetooth or WIFI module.		
®	<u> </u>			

Note: When PV or utility is charging, the battery will be balanced by default at 06:00 on the 28th of each month (the date can be modified).

★ Parallel status icon name rule:



Note: The master and slave units are randomly defined.

2.4 Real-time data

2.4.1 PV real-time data

On the home page, touch

to enter the PV real-time data interface, the information displayed is

as follows:

Icon	Instruction
167.0 V 13360 W	PV input voltage, PV input current PV energy flow indication PV real-time power Note: If there is only one PV input, only one PV icon will be displayed here.
3.45 KW -25.6 °C	Total PV generation (not displayed if there is only one PV input) PV module temperature (temperature sampling by the PV internal heat sink (DC/DC heat sink)

OVD: OVR: UVP: UVR:	500.0 V 480.0 V 80.0 V 100.0 V	Swipe up and down in this area to view all the settable parameters of the PV module. 1. Refer to "2.5.1 Parameter list > 1.PV (PV parameter setting)" to view the default values and setting range of the PV module.
PV1 Today : PV1 Month : PV1 Year : PV1 Total :	18.8 KWh 18.8 KWh 18.8 KWh 18.8 KWh	To slide up and down in this area to view the daily, monthly, annual and total power generation statistics of the PV module.

2.4.2 Utility real-time data

On the home page, touch

to enter the utility real-time data interface. The information displayed

is as follows:

Icon	Instruction
233.0 V 2.5 A 50.8 Hz 582.5 W	Utility input voltage, current, frequency Utility energy flow instructions Energy feed into the grid (the arrow points to the grid); utility consumption power (the arrow points to the inverter/charger.)
OVD: 265.0 V OVR: 255.0 V UVD: 175.0 V UVR: 185.0 V OFD: 70.0 Hz	Swipe up and down in this area to see all the settings of the utility. Refer to "2.5.1 Parameter list > 3. Grid (Grid parameter setting)" to view the default values and setting range of all utility parameters.
Today Consumption: 0.0 KWh This Month Consumption: 0.0 KWh This Year Consumption: 0.0 KWh Total Consumption: 0.0 KWh	Display the daily, monthly, yearly, and total electricity consumption statistics of the utility.

2.4.3 Inverter/charger real-time data

On the home page, touch

to enter the inverter/charger real-time data interface, and the interface $% \left(1\right) =\left(1\right) \left(1\right)$

will display the current product series, product model, SN, LCD PCB version, LCD firmware version and other product information.

to show other parameters.

2.4.4 Load real-time data

On the home page, touch

to enter the load real-time data interface.

Click *Fun* to display the Payload Real-time Data, Setting Parameters To Display page, and Parallel Real-Time Data page.

Click Page to display all the information for the current page.

2.4.5 Battery real-time data

On the home page, touch

to enter the battery real-time data interface. The information $% \left(1\right) =\left(1\right) \left(1$

displayed is as follows:

Voltage : 57.8 V
Current : 10.5 A
Power : 606.9 W
Temp : 26.8 °C
Status : Boosting

Displays real-time data of the battery: voltage, current, power, battery temperature, charging state.

- 1. The number 23 indicates the currently battery protocol.
- 2. BMS indicates the set value of "BMS (BMS Enable)," gray indicates disable, and green indicates enable.
- VOL indicates the setting value of "BMSVolt (BMS Voltage Control)," gray indicates disable, and green indicates enable.
- 4. CUR indicates the setting value of "BMSCurr (BMS Current Control)," gray indicates that the parameter is set to "Invalid", green indicates that the parameter is set to "BMS."

2.4.6 Real-time error code

If there is no fault in the current system,

will be displayed on the home page.

If there is a fault in the current system,

will be displayed on the home page. Touch this icon to

enter the real-time error code interface.

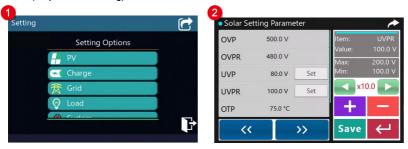
Click Fun to display "Real-time Error Code, Historical Error Code" in order.

Click *Clear* to clear the current fault list (the fault information will be cleared only after the system fault is cleared; otherwise, the real-time fault list will not be cleared).

If there are *Up* and *Down* on the current page, click the button to display the previous page and next page.

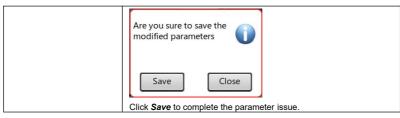
2.5 Parameters setting

2.5.1 Parameters list


The parameter setting interface includes: PV (PV parameter setting), Charge (battery charge control parameter setting), Grid (Grid parameter setting), Load (Load parameter setting), System (System parameter setting), Others (Other parameters setting) and password setting.

On the current interface, swipe up and down to select the parameter item to be set, and click it to enter the parameter setting interface.

Click of exit the current interface and return to the home page (after exiting in this way, if you enter the parameter setting interface again within 5 minutes, you do not need to enter the password; if it exceeds 5 minutes, you need to re-enter the password).

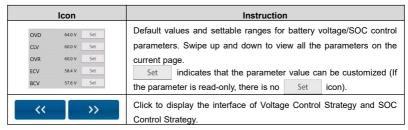

Click of safety exit the current interface to return to the home page (after exiting in this way, you will need to re-enter the password to enter the parameter setting interface).

1. PV (PV parameter setting)

On the parameter setting interface, click **PV** to enter the PV parameter setting interface. The following information is displayed:

Icon	Instruction
OVP 500.0 V OVPR 480.0 V UVP 800.0 V Set UVPR 100.0 V Set OTP 75.0 °C	Default values and settable ranges of PV parameters. Swipe up and down to view all the parameters on the current page. Set indicates that the parameter value can be customized (If the parameter is read-only, there is no Set icon).
« »	Click to display the interface that can be set in addition to the current interface (Note: The PV configurable parameters are only on the current interface, and clicking the button does not respond.)
Item: OVPR Value: 260.0 V Max: 355.0 V Min: 100.0 V	Click Set button to display the parameter name, default value, maximum value and minimum value that can be set.
x10.0	as 0.1 times, 0.5 times, 1 times, and 10 times. After the times of step size is set, click this button to increase or decrease the current parameter.
After the parameter setting is complete, click to confirm value. After all the parameters on the current page are set, click issue new parameter value, and the following message box up:	

• Default value and setting range for PV parameters as shown in the below:


Parameter	Default	User define
Solar Setting Parameter		
OVP (Over Voltage Protection Voltage)	500.0V	Read-only
OVPR (Over Voltage Protection Reconnect Voltage)	480.0V	Read-only
UVP (Under Voltage Protection Voltage)	80.0V	User define: 80.0V to (Under Voltage Protection Reconnect Voltage minus 5V), step size: 0.1V
UVPR (Under Voltage Protection Reconnect Voltage)	100.0V	User define: 100.0 to 200.0V, or (Under Voltage Protection Voltage plus 5V) to 200.0V, step size: 0.1V Note: Take the maximum value between 100.0V and (Under Voltage Protection Voltage plus 5V).
OTP (Over Temperature	75.0°C	Read-only. PV Over Temperature Protection Temperature for UC5542-1050P20C / UCP5542-1050P20C / UC6042-1250P20C.
Protection Temperature)	70.0°C	Read-only. PV Over Temperature Protection Temperature for UC3522-1250P20C / UCP3522-1250P20C / UC3542-0650P20C/UCP3542-0650P20C.
OTPR (Over	70.0℃	Read-only. PV Over Temperature Protection Reconnect Temperature for UC5542-1050P20C / UCP5542-1050P20C/UC6042-1250P20C.
Temperature Protection Reconnect Temperature)	65.0℃	Read-only. PV Over Temperature Protection Reconnect Temperature for UC3522-1250P20C / UCP3522-1250P20C / UCP3542-0650P20C / UCP3542-0650P20C.

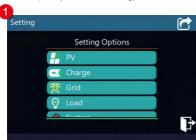
2. Charge (Battery charge control parameter setting)

On the parameter setting interface, click *Charge* to enter the battery charge control parameter setting interface. The following information is displayed:

Note: For the content and operation methods of the parameter setting area on the right, please refer to the introduction of "1. PV (PV parameter setting)."

Default value and setting range for battery charge control parameters as shown in the below:

Parameter	Default	User define	
2.1 Voltage Control Strategy			
OVD (Over Voltage	64.0V (48V system)	User define: (Over Voltage Reconnect Voltage plus 0.1*N) ≤ Over Voltage Disconnect Voltage ≤ 16*N, step	
Disconnect Voltage)	32.0V (24V system)	size: 0.1V Note: N=Rated battery voltage/12.	
CLV (Charging Limit Voltage)	60.0V (48V system) 30.0V (24V system)	User define: Equalize Charging Voltage < Charging Limit Voltage < Over Voltage Disconnect Voltage, step size: 0.1V	


Parameter	Default	User define
OVR (Over Voltage Reconnect Voltage)	60.0V (48V system) 30.0V (24V system)	User define: 42.8V ≤ Over Voltage Reconnect Voltage ≤ (Over Voltage Disconnect Voltage minus 0.1*N), step size: 0.1V. Note: N=Rated battery voltage/12.
ECV (Equalize Charging Voltage)	58.4V (48V system) 29.2V (24V system)	User define: 21.4V ≤ Over Voltage Reconnect Voltage < Over Voltage Disconnect Voltage minus 0.1*N, step size: 0.1V. Note: N=Rated battery voltage/12.
BCV (Boost Charging Voltage)	57.6V (48V system) 28.8V (24V system)	User define: Float Charging Voltage ≤ Boost Charging Voltage ≤ Equalize Charging Voltage, step size: 0.1V
FCV (Float Charging Voltage)	55.2V (48V system) 27.6V (24V system)	User define: Boost Voltage Reconnect Voltage < Float Charging Voltage ≤ Boost Charging Voltage, step size: 0.1V
BVR (Boost Voltage Reconnect Voltage)	52.8V (48V system) 26.4V (24V system)	User define: Low Voltage Reconnect Voltage < Boost Voltage Reconnect Voltage < Float Charging Voltage, step size: 0.1V
LVR (Low Voltage Reconnect Voltage)	50.4V (48V system)	User define: Low Voltage Disconnect Voltage < Low Voltage Reconnect Voltage < Boost Voltage Reconnect Voltage, step size: 0.1V Note: This voltage is also the recovery voltage for the
	25.2V (24V system)	AC output main power-off and second power-off. The relays of the AC output main power-off and second power-off are connected again after the battery voltage rises to this voltage.
UVWR (Under Voltage Warning Reconnect Voltage)	48.8V (48V system) 24.4V (24V system)	User define: (Under Voltage Warning Voltage + 0.1*N) ≤ Under Voltage Warning Reconnect Voltage ≤ (Over Voltage Reconnect Voltage minus 0.1*N), step size: 0.1V Note: N=Rated battery voltage/12.

Parameter	Default	User define
UVW (Under Voltage Warning Voltage)	48.0V (48V system)	User define: 42.8V ≤ Under Voltage Warning Voltage ≤ (Under Voltage Warning Reconnect Voltage minus 0.1*N), step size: 0.1V Note: N=Rated battery voltage/12. This voltage is also the disconnect voltage for the AC output main power-off. The relay of the AC output main power-off is disconnected after the battery voltage drops to this voltage.
	24.0V (24V system)	User define: 21.4V ≤ Under Voltage Warning Voltage ≤ (Under Voltage Warning Reconnect Voltage minus 0.1*N), step size: 0.1V Note: N=Rated battery voltage/12. This voltage is also the disconnect voltage for the AC output main power-off. The relay of the AC output main power-off is disconnected after the battery voltage drops to this voltage.
LVD (Low Voltage Disconnect Voltage)	44.4V (48V system)	User define: Discharging Limit Voltage < Low Voltage Disconnect Voltage < Low Voltage Reconnect Voltage, step size: 0.1V
	22.2V (24V system)	Note: This voltage is also the disconnect voltage for the AC output second power-off. When the battery voltage drops to this voltage, the relay of the AC output second power-off is disconnected and the buzzer will beep for 5 seconds continuously and then stop to remind the user that the battery is low and needs to be charged in time.
DLV (Discharging Limit Voltage)	40.7V (48V system) 20.3V (24V system)	Read-only
AUX OFF (Auxiliary module OFF voltage)	56.0V (48V system) 28.0V	Under the charging mode of "Solar > Grid," the utility will stop charging the battery if the battery voltage exceeds this value. User define: (Auxiliary module ON voltage plus 0.2*N) ≤
AUX ON (Auxiliary module ON voltage)	(24V system) 51.0V (48V system)	Auxiliary module OFF voltage ≤ Charging Limit Voltage (N=Rated battery voltage/12) Under the charging mode of "Solar > Grid," the utility will stop charging the battery if the battery voltage exceeds
	25.5V (24V system)	this value. User define: (Auxiliary module ON voltage plus 0.2*N) ≤ Auxiliary module OFF voltage ≤ Charging Limit Voltage (N=Rated battery voltage/12)

Parameter	Default	User define	
2.2 SOC Control Strategy			
FCP (Full Charging Protection SOC)	100%	It takes effect after the "BCCMode" is set as "SOC." When the battery SOC is higher than or equals to this value, the inverter/charger will stop charging the battery. User define: (Full Charging Protection Reconnect SOC plus 5%) to 100%, or 80% to 100%, step size: 1% Note: Take the maximum value between (Full Charging Protection Reconnect SOC plus 5%) and 80%.	
FCPR (Full Charging Protection Reconnect SOC)	95%	It takes effect after the "BCCMode" is set as "SOC." When the battery SOC is lower than this value, the inverter/charger will charge the battery. User define: 60% to (Full Charging Protection SOC minus 5%), step size: 1%	
LPAR (Low Power Alarm Reconnect SOC)	40%	It takes effect after the "BCCMode" is set as "SOC." It cannot be set separately (equals the "Discharging Protection Reconnect SOC").	
LPA (Low Power Alarm SOC)	25%	It takes effect after the "BCCMode" is set as "SOC." User define: 10% to 35%, or 10% to (Discharging Protection Reconnect SOC minus 5%), step size: 1% Note: Take the minimum value between (Discharging Protection Reconnect SOC minus 5%) and 35%.	
DPR (Discharging Protection Reconnect SOC)	40%	It takes effect after the "BCCMode" is set as "SOC." User define: (Discharging Protection SOC plus 5%) to 60%, or 20% to 60%, step size: 1% Note: Take the maximum value between (Discharging Protection SOC plus 5%) and 20%.	
DP (Discharging Protection SOC)	10%	It takes effect after the "BCCMode" is set as "SOC." When the battery SOC is lower than this value, the battery will stop discharging. User define: 0 to 30%, or 0 to (Discharging Protection Reconnect SOC minus 5%), step size: 1% Note: Take the minimum value between (Discharging Protection Reconnect SOC minus 5%) and 30%.	

Parameter	Default	User define
UAC ON (Utility Charging ON SOC)	30%	It takes effect after the "BCCMode" is set as "SOC."
		User define: 20% to 50%, or 20% to (Utility Charging
		OFF SOC minus 10%), step size: 1%
		Note: Take the minimum value between 50% and
		(Utility Charging OFF SOC minus 10%).
UAC OFF (Utility Charging OFF SOC)	60%	It takes effect after the "BCCMode" is set as "SOC."
		User define: (Utility Charging ON SOC plus 10%) to
		100%, or 40% to 100%, step size: 1%
		Note: Take the maximum value between (Utility
		Charging ON SOC plus 10%) and 40%.
Set SOC	Not fixed	Read-only. When the BMS is valid and the
		communication is normal, the real-time SOC value is
		automatically uploaded to the inverter/charger.

3. Grid (Grid parameter setting)

On the parameter setting interface, click *Grid* to enter the grid parameter setting scree. The following information is displayed:

	Icon	Instruction
UOD UOR ULVD ULVR UOF	265.0 V Set 255.0 V Set 175.0 V Set 185.0 V Set 70.0 Hz Set	Default values and settable ranges for grid setting parameters. Swipe up and down to view all the parameters on the current page. Set indicates that the parameter value can be customized (If the parameter is read-only, there is no Set icon).
<<	>>	Click to display the interface that can be set in addition to the current interface (Note: The Grid configurable parameters are only for the current interface, and there is no response when you click the button.)

Note: For the content and operation methods of the parameter setting area on the right, please refer to the introduction of "1. PV (PV parameter setting)."

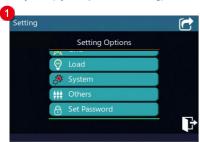
Default value and setting range for Grid parameters as shown in the below:

Parameter	Default	User define
3.1 Grid Setting Parameter		
UOD (Utility Over Voltage Disconnect Voltage)	265.0V	User define: (Utility Over Voltage Reconnect Voltage plus 10V) to 285.0V, step size: 0.1V
UOR (Utility Over Voltage Reconnect Voltage)	255.0V	User define: 220.0V to (Utility Over Voltage Disconnect Voltage minus 10V), step size: 0.1V
ULVD (Utility Low Voltage Disconnect Voltage)	175.0V	User define: 90.0V to (Utility Low Voltage Reconnect Voltage minus 10V), step size: 0.1V
ULVR (Utility Low Voltage Reconnect Voltage)	185.0V	User define: (Utility Low Voltage Disconnect Voltage plus 10V) to 220.0V, step size: 0.1V
UOF (Utility Over Frequency Disconnect Frequency)	70.0Hz	In the bypass state, when the actual utility input frequency is higher than this value, the inverter/charger will be switched to the inverter output state. User define: 52.0 to 70.0Hz, or (Utility Under Frequency Disconnect Frequency plus 0.5Hz) to 70.0Hz, step size: 0.1Hz. Note: Take the maximum value between 52.0Hz and (Utility Under Frequency Disconnect Frequency plus 0.5Hz).
UFD (Utility Under Frequency Disconnect 40.0Hz Frequency)		In the bypass state, when the actual utility input frequency is lower than this value, the inverter/charger will be switched to the inverter output state. User define: 40.0Hz to 58.0Hz, or 40.0Hz to (Utility Over Frequency Disconnect Frequency minus 0.5Hz), step size: 0.1Hz. Note: Take the minimum value between 58.0Hz and (Utility Over Frequency Disconnect Frequency minus 0.5Hz).

4. Load (Load parameter setting)

On the parameter setting interface, click *Load* to enter the load parameter setting interface. The following information is displayed:

Icon	Instruction
INVOVL	Default values and settable ranges for load setting parameters. Swipe up and down to view all the parameters on the current page. Set indicates that the parameter value can be customized (If the parameter is read-only, there is no Set icon).
~~	Click to display the interface that can be set in addition to the current interface (Note:The load configurable parameters are only for the current interface, and there is no response when you click the button.)


Note: For the content and operation methods of the parameter setting area on the right, please refer to the introduction of "1. PV (PV parameter setting)."

• Default value and setting range for load parameters as shown in the below:

Parameter	Default	User define
4. 1 Load Setting Parameter		
INVOVL (Inverter Output Voltage Level)	230V	User define: 220V/230V
INVOFR (Inverter Output Frequency Range)	50Hz	User define: 50Hz / 60Hz Note: When the Utility power is connected and the Utility frequency is detected, the output frequency will be in accordance with the Utility frequency in the Utility bypass mode. For single inverter/charger, it will take effect immediately after the "INVOFR" is changed. For the parallel connection, you must shut down the inverter/charger for 10s and then restart it for the modification to take effect (Enter into the "Load Setting Parameter" interface again to check if the change has been changed).
	35.0A	Read-only. Load Current Limit for UC3522-1250P20C / UCP3522-1250P20C / UC3542-0650P20C / UCP3542-0650P20C.
Load CL (Load Current Limit)	42.0A	Read-only. Load Current Limit for UC5542-1050P20C / UCP5542-1050P20CC / UC6042-1250P20C.

Parameter	Default	User define
INVOP (Inverter Over Voltage Protection Voltage)	265.0V	Read-only
INVOPR (Inverter Over Voltage Protection Recovery Voltage)	255.0V	Read-only
TempUL (Temperature	75.0℃	Read-only. Temperature Upper Limit for UC5542-1050P20C / UCP5542-1050P20C / UC6042-1250P20C.
Upper Limit)	70.0°C	Read-only. Temperature Upper Limit for UC3522-1250P20C / UCP3522-1250P20C / UCS542-0650P20C / UCP3542-0650P20C.
TempULR (Temperature	70.0℃	Read-only. Temperature Upper Limit Recovery for UC5542-1050P20C / UCP5542-1050P20C / UC6042-1250P20C.
Upper Limit Recovery)	65.0°C	Read-only. Temperature Upper Limit Recovery for UC3522-1250P20C / UCP3522-1250P20C / UC3542-0650P20C / UCP3542-0650P20C.

5. System (System parameter setting)

On the parameter setting interface, click **System** to enter the system parameter setting interface. The following information is displayed:

	Icon		Instruction		
Status	Have	Set	Default values and settable ranges for system setting parameters.		
BDCap	100.0 AH	Set			
ВТуре	FLD	Set	Swipe up and down to see all the parameters on the current page.		
BRV	48 V		Set indicates that the parameter value can be customized (If		
LBACC	60.0 A	Set	the parameter is read-only, there is no Set icon).		

~~ >>	Click to display the setting interface of "Battery Basic Properties, Advanced Battery Properties, Charge and Discharge Management, System Time Setting, and Local Parameters."
item: Status Value: Have Have Have NO	Option-based parameter setting method: Click — to switch options, and a green dot flashes in front of the parameter to indicate that the current parameter is selected. Click to confirm, and click Save to issue new parameter value. For details on setting numerical parameters, refer to the introduction of "1. PV (PV parameter setting)."

Default value and setting range for system parameters as shown in the below:

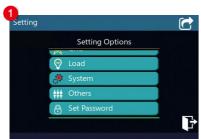
Parameter	Default	User define	
5.1 Battery Basic Properties			
Status (Battery Status)	Have	User define: Have, NO Note: When the parameter value is changed (i.e., the value is changed from "Have" to "NO", or from "NO" to "Have"), the AC output will be cut off for about 3 seconds before resuming normal output.	
BDCap (Battery Design Capacity)	100.0 AH	User define: 10.0AH to 2400.0AH, step size: 0.1AH	
BType (Battery Type)	FLD	48V battery type: AGM, OPZS, GEL, FLD, LFP15S, LFP16S, LNCM13S, LNCM14S Note: After the battery type is selected, you need to enter the interface of "Charge > Voltage Control Strategy," click "SAVE" button and wait for about 10 seconds, otherwise the modified battery type will not be saved. 24V battery type: AGM, OPZS, GEL, FLD, LFP8S, LNCM6S, LNCM7S Note: After the battery type is selected, you need to enter the interface of "Charge > Voltage Control Strategy," click "SAVE" button and wait for about 10 seconds, otherwise the modified battery type will not be saved.	
BRV (Battery Voltage)	48 V	Read-only. Battery Voltage for UC3542-0650P20C / UCP3542-0650P20C / UCP5542-1050P20C / UCP5542-1050P20C / UCP5542-1050P20C / UCP5542-1050P20C / Read-only. Battery Voltage for UC3522-1250P20C /	
	24V	UCP3522-1250P20C.	

Parameter	Default	User define	
		User define: 5.0A to 60.0A for UC3542-0650P20C /	
		UCP3542-0650P20C, step size: 0.1A. Namely, the maximum	
		allowable charge current on battery side.	
LBACC (Local		User define: 5.0A to 100.0A for UC5542-1050P20C /	
Battery Available	20.0 A	UCP5542-1050P20C, step size: 0.1A. Namely, the maximum	
Charging Current)		allowable charge current on battery side.	
		User define: 5.0A to 120.0A for UC3522-1250P20C /	
		UCP3522-1250P20C / UC6042-1250P20C, step size: 0.1A.	
		Namely, the maximum allowable charge current on battery side.	
		User define: 10.0A to 175.0A for UC3542-0650P20C /	
	175.0A	UCP3542-0650P20C, step size: 0.1A. Namely, the maximum	
		allowable discharge current on battery side.	
LBADC (Local		User define: 10.0A to 250.0A for UC5542-1050P20C /	
Battery Available	250.0A	UCP5542-1050P20C / UC6042-1250P20C, step size: 0.1A.	
Discharging	200.071	Namely, the maximum allowable discharge current on battery	
Current)		side.	
		User define: 10.0A to 380.0A for UC3522-1250P20C /	
	380.0A	UCP3522-1250P20C, step size: 0.1A	
		Namely, the maximum allowable discharge current on battery	
		side.	
BECT (Battery			
Equalize Charging	120 m	User define: 10minutes to 180 minutes, step size: 1 minute	
Time)			
BECD (Battery			
Equalize Charging	28D	User define: 1–28, step size: 1	
Date)			
BBCT (Battery	400		
Boost Charging	120m	User define: 10minutes to 180 minutes, step size: 1 minute	
Time) BTCC			
	3		
(Battery Temperature	mV/℃	User define: 0–9, step size: 1	
Compensation	/2V	Note: This option is reserved, which is invalid currently.	
Conficient)	/2 V		
5.2 Advanced Battery Properties			
J.Z Advanced Battery	rroperties	User define: Disable, Enable	
Li PROT (Lithium	Disable	•	
Battery Protection)	Disable	, 3. 3	
	l	temperature limit function is effective.	

Parameter	Default	User define
LTSChrg (Low Temperature Stop Charging Temperature)	0°C	User define: -20°C to 0°C, step size: 0.1°C When the environment or the battery temperature is lower than this value,the inverter/charger will stop charging the battery.
LTSDischrg (Low Temperature Stop Discharging Temperature)	0℃	User define: -20°C to 0°C, step size: 0.1°C When the environment or the battery temperature is lower than this value, the inverter/charger will stop discharging.
BATT OTP (Battery Over Temperature Protection)	50.0℃	User define: (Battery Over Temperature Protection Recovery plus 5°C) to 60°C, step size: 0.1°C
BATT OTPR (Battery Over Temperature Protection Recovery)	45.0°C	User define: 30.0°C to (Battery Over Temperature Protection minus 5°C), step size: 0.1°C
Chrg (Charging)	Enable	Read-only
Dischrg (Discharging)	Enable	Read-only
PCUP (Phase Current Unbalance Protection)	Disable	User define: Disable, Enable Note: The parameter will only take effect when used in three phase. Note: After the setting value was changed, the factory reset cannot be restored to the default value, it must be set by manually.
INVPSet (Inverter Phase Setting)	S	User define: S (Single), A (Phase A), B (Phase B), C (Phase C) Note: After the "INVPSet" is changed, must turn off the inverter/charger for 10 seconds before restarting. Enter into the "System > Advanced Battery Properties" interface again to check if the change has taken effect. Note: After the setting value was changed, the factory reset cannot be restored to the default value, it must be set by manually.

Parameter	Default	User define
UCD (Unbalanced Current Difference)	5A	User define: 0–16A for UC3542-0650P20C / UCP3542-0650P20C / UC3522-1250P20C / UCP3522-1250P20C, step size:0.1A 0–25A for UC5542-1050P20C / UCP5542-1050P20C, step size: 0.1A, 0–28A for UC6042-1050P20C, step size:0.1A. Note: The parameter will only take effect when used in three phase. When "PCUP (Phase Current Unbalance Protection)" is enabled, if current unbalance value between any two phases is higher than set value, the load output will be turned off automatically. Note: After the setting value was changed, the factory reset cannot be restored to the default value, it must be set by manually.
Grid Feeding (Grid Switch)	Disable	User define: Disable, Enable When set to "Enable," the inverter/charger operates in the On-Grid mode. The PV supplies power to the load first, and then charges the battery. Only if there is excess energy will it be fed into the Grid. The maximum power fed into the Grid is limited by the setting of the "Feeding Power (Maximum On-grid Power)." Note: When the charging mode is set as "Solar" or "Grid > Solar," this parameter will not take effect.
PWRSave (Power Saving)	Disable	User define: Disable, Enable When set to "Enable," the inverter/charger will enter the power saving mode if the AC output power continuously remains below 50W during the "PWRSDT (Power Saving Detection Time)." Power saving mode wake-up method: After the inverter/charger enters the power saving mode, it first shuts down for 5 minutes, then restarts automatically. And then, it monitors whether the AC output power is higher than 50W during the "PWRSDT." If the AC output power is higher than 50W, the inverter/charger wakes up and switches to normal operation mode; otherwise, it continues to maintain the power saving mode.

Parameter	Default	User define
	3.4KW	User define: 0.1KW to 5.5KW for UC5542-1050P20C / UCP5542-1050P20C, step size: 0.1KW
Feeding Power (Maximum On-grid Power)	2.3KW	User define: 0.1KW to 3.5KW for UC3522-1250P20C / UCP3522-1250P20C / UC3542-0650P20C / UCP3542-0650P20C, step size: 0.1KW
	4.0KW	User define: 0.1KW to 6.0KW for UC6042-1250P20C, step size: 0.1KW
PWRSDT (Power Saving Detection Time)	10m	User define: 1 minute to 10 minutes, step size: 1 minute
5.3 Charge and Discharge Manag	jement	
BACC (Battery Available Charging Current) When the BMS is enabled and the communication between the inverter/charger and the lithium battery's BMS is normal, the "BACC" value is read from the BMS. Otherwise, the "BACC" value equals the setting value of "LBACC" after each power-on. If "LBACC" is changed without a subsequent restart, the "BACC" value remains the previous value of "LBACC".	20.0A	Read-only, the maximum allowable charge current on battery side for UC3542-0650P20C/UCP3542-0650P20C / UC5542-1050P20C / UCP5542-1050P20C / UCP5542-1250P20C / UCP3522-1250P20C / UCP352
BADC (Battery Available Discharging Current) When the BMS is enabled and	175.0A	Read-only, the maximum allowable discharge current on battery side for UC3542-0650P20C / UCP3542-0650P20C.
the communication between the inverter/charger and the lithium battery's BMS is normal, the	250.0A	Read-only, the maximum allowable discharge current on battery side for UC5542-1050P20C / UCP5542-1050P20C / UCP6042-1250P20C.
"BADC" value is read from the BMS. Otherwise, the "BADC" value equals the setting value of "LBADC" after each power-on. If "LBADC" is changed without a subsequent restart, the "BADC" value remains the previous value of "LBADC".	380.0A	Read-only, the maximum allowable discharge current on battery side for UC3522-1250P20C / UCP3522-1250P20C.


Parameter	Default	User define
	60.0A	User define: 5.0A to 60.0A for UC3542-0650P20C / UCP3542-0650P20C, step size: 0.1A Namely, the maximum current at the battery end when the utility charges the battery.
UACC (Utility Available Charging Current)	100.0A	User define: 5.0A to 100.0A for UC5542-1050P20C / UCP5542-1050P20C / UC6042-1250P20C, step size: 0.1A. Namely, the maximum current at the battery end when the utility charges the battery.
	110.0A	User define: 5.0A to 110.0A for UC3522-1250P20C / UCP3522-1250P20C, step size: 0.1A Namely, the maximum current at the battery end when the utility charges the battery.
CMode (Charging Mode)	Solar + Grid	User define: Solar (Solar only), Solar > Grid (Solar priority), Solar+Grid, Grid > Solar (Grid priority). Note: For detailed working modes, refer to chapter 4.
DMode (Discharge Mode)	PV>BP>BT	User define: PV>BP>BT (namely, PV>Bypass>Battery), PV>BT>BP (namely, PV>Battery>Bypass), BP>PV>BT (namely, Bypass>PV>Battery) Notes: 1. For detailed working modes differences, please refer to chapter 4 Working modes. 2. The "Dmode (Discharge Mode)" is only effective when the "Cmode (Charging Mode)" is set as "Solar (Solar Only)" or "Solar > Grid (Solar priority)." 3. If the "Cmode (Charging Mode)" is set as "Solar (Solar Only)" or "Solar > Grid (Solar priority)," during parallel operation, you should set the "Dmode (Discharge Mode)" as "PV>BT>BP (namely, PV>Battery>Bypass)," or "BP>PV>BT (namely, Bypass>Solar>Battery)" first.
ACmode (AC Input Mode)	Grid	User define: Grid, Oil When the AC input is an oil generator, this parameter needs to be set to "Oil" to improve the charging capability. Note: If the AC input mode does not match the AC source of the actual input, the normal operation of the inverter/charger will be affected. After setting, restart the inverter/charger for the setting to take effect.

Parameter	Default	User define	
PVMode (PV Mode)	Single	User define: Single, Parallel. When two or more PV arrays are independently input, the value shall be set to "Single." When two or more PV arrays are connected in parallel as a single input to the inverter/charger, the value needs to be set to "Parallel." The wiring diagram between the PV array and the inverter/charger is as follows: PV1 PV2 PV2 PV2 PV2 PV2 PV2 PV2	
BCCMode (Battery Charging Control Mode)	VOL	User define: VOL (Voltage), SOC VOL: The battery voltage control parameters take effect after setting this value as "VOL." SOC: The SOC parameters take effect after setting this value as "SOC." Note: If "SOC" is selected, the battery needs to go through several full charge and discharge cycles, and the battery capacity must be set correctly.	
BMSProt (BMS Protocol)	10	User define: 1–31, step size: 1 Note: Refer to the Lithium battery protocol file.	
BMS (BMS Enable)	Disable	User define: Disable, Enable Set this value as "Enable," the inverter/charger will communicate with the battery normally.	
BMSVolt (BMS Voltage Control)	Enable	User define: Disable, Enable Set this value as "Enable," the BMS internal voltage control parameters will be automatically synchronized to the inverter/charger, and the inverter/charger will control the battery charging/discharging based on these parameters.	
BMSCurr (BMS Current Control)	Invalid	User define: Invalid, BMS Set this value as "Invalid," the inverter/charger controls the charge and discharge according to the value set on the LCD. Set this value as "BMS," the inverter/charger controls the charge and discharge according to the read BMS value.	

Parameter	Default	User define	
BMSFail (BMS Fail Action)	DSP	User define: DSP, Disable DSP: The inverter/charger works according to the default mode and parameters. Disable: No charging and discharging, equivalent to standby	
BCM (Battery Connection Method)	Only	mode. User define: Only, Share This parameter takes effect when the inverter/chargers are connected in parallel. If each inverter/charger is connected to the same battery pack, this value needs to be set to "Share." If each inverter/charger is connected to a separate battery pack, this value needs to be set to "Only."	
5.4 System Time Set	ting		
5.5 Local Parameters	3		
LCD BRT (LCD Brightness)	100%	User define: 50% to 100% It indicates the LCD brightness when operating the LCD.	
TODelay (Idle Timeout Delay)	15S	User define: 6S to 60S, step size: 1S After not operating the LCD, when the set "TODelay" time arrives, the LCD brightness decreases to the set "LCDSBRT" brightness.	
LCDSBRT (Standby LCD Brightness)	50%	User define: 35% to 100% It indicates the LCD brightness after no operation for more than "TODelay" time.	
SOT (Screen OFF Time)	30\$	User define: 15–60S, step size: 1S If the "Screen TO" is set to "ON", the LCD will turn off if time of no operation exceeds the "TODelay" time, and then exceeds the "SOT" time.	
Com ID (Communication ID)	1	User define: 1 - 240, step size: 1	
Com BPS (Communication Baud Rate)	115200bp s	User define: 9600, 19200, 38400, 57600, 115200, 256000	
DCT ON (Dry Contract ON Voltage)	44.0V (48V system) 22.0V (24V system)	User define: 9*N to (Dry Contract OFF Voltage minus 0.2*N), step size: 0.1V. Note: N=Rated battery voltage/12. When the battery voltage is lower than this value, the dry contact is connected.	

Parameter	Default	User define	
	50.0V		
DOT OFF (D-)	(48V	User define: (Dry Contract ON Voltage plus 0.2*N) to 17*N,	
DCT OFF (Dry Contract OFF	system)	step size: 0.1V. Note: N=Rated battery voltage/12.	
	25.0V	When the battery voltage is higher than this value, the dry	
Voltage)	(24V	contact is disconnected.	
	system)		
Switch BMS	Enable	User define: Enable, Disable Under normal BMS communication, setting it to "Enable" allows charging, while setting it to "Disable" disallows charging. This parameter is invalid when BMS communication is abnormal.	
Buzz	ON	User define: ON, OFF When set to "OFF," the buzzer does not go off even if the inverter/charger fault occurs.	
LED	ON	User define: ON, OFF When set to "OFF," the LED indicator is off	
HRI (History Record Interval)	608	User define: 1 second to 3600 seconds, step size: 1 second Set the time interval for recording the historical data (only refers to the voltage, current and other data stored regularly, excluding the historical faults. These historical data can be exported by the Solar Guardian PC software or Website.)	

6. Others (Other parameters setting)

On the parameter setting interface, click *Others* to enter other parameters setting interface. The following information is displayed:

Click to switch the page and set the relevant parameters directly via the touch interface operation.

Default value and setting range for other parameters as shown in the below:

Parameter	Default	User define		
6. Others	6. Others			
Wireless ON		User define: OFF, ON		
Wileless	ON	Open/close the built-in WIFI module.		
RTU Power (5V		User define: OFF, ON		
power supply for	ON	Turn on or off the 5V power supply of the inverter/charger COM		
COM port)		port. The external Bluetooth or WIFI module can only work after it		
. ,		is set to "ON."		
		User define: ON, OFF		
Screen Timeout	ON	LCD backlight switch. Set to "ON," the LCD backlight will turn off		
		after the "TODelay" time plus the "SOT" time has elapsed. Set to		
		"OFF," the LCD backlight will remain on.		
	Normal	User define: Normal Mode, Standby Mode To reset the settings parameters: select "Standby Mode," and		
Parameter Rest	Mode	then click the "Factory Reset" button to restore parts of setting		
	ivioue	parameters to the default values (including password settings).		
		User define: ECO Mode. Normal Mode		
		When set as "ECO Mode," the inverter/charger will enter the low		
		power mode when certain conditions are met, such as no PV and		
Low Power	ECO	utility, and the battery voltage drops to the low voltage disconnect		
Mode	Mode	voltage. When set as "Normal Mode," the inverter/charger will not		
		enter the low power mode. If set to "Normal Mode," it will		
		automatically return o "ECO Mode" after restarting.		
		On the "Low Power Mode" interface, press the "Manual		
		Equalizer" button to enter the manual equalization charging		
Manual		stage. If the inverter/charger is restarted at this time, it will		
Equalizer		automatically exit the manual equalization charging state.		
		Note: This function has nothing to do with the selection of "Low		
		Power Mode."		
		User define: PV Source, DC Source		
DC Source		When using a DC power supply instead of a PV array for power		
	PV Source	supply testing, set this parameter as "DC Source," otherwise the		
		inverter/charger will not work properly. When set to "DC Source,"		
		the PV indicator will flash green; when set to "PV Source," the PV		
		indicator will remain continuously green. If set to "DC Source," it		
		will automatically return o "PV Source" after restarting.		

Parameter	Default	User define
Initializing Records	1	On the "DC Source Characteristic" interface, press the "Initializing Records" button and the progress bar pops up, the historical records and faults will be cleared after approximately 40 seconds. Note: This function has nothing to do with the selection of "DC Source Characteristic."
Clear Statistical Power	Day Month Year	User define: Day Month Year, Total Generation After selecting "Day Month Year" or "Total Generation", press the "Clear" button to clear the corresponding cumulative energy.

7. Set password

- On the parameter setting page, click **Set Password** to enter the password modifying interface.
- 2. Enter the original password, the new password, and click Update to enter the interface of re-entering the password.

- 3. Enter the new password again and click Update
- 4. Enter the new password and click OK to complete the password modifying and re-enter the parameter setting interface.

Note: The password can be changed to blank or any other digit no more than 6 digits. If the password is empty, no digits will be entered when changing the password.

8. Quick Setting Of BMS Parameters

Note: Enter the "Quick Setting Of BMS Parameters" interface without an administrator password, allowing for rapid configuration of BMS related parameters.

- On the home page, click upper-right corner.
- in the
- 2. Enter the password input interface, click on the right interface, and then, click to enter the "Quick Setting Of BMS Parameters" setting interface.

- 3. Select the "Battery Type" and "Protocol Number" according the actual situation, and click \bigcirc K to return to the home page.
- When selecting "Battery Type" as "AGM, OPZS, GEL or FLD," "SOC or VOL" is displayed as
 by default, and the "Protocol Number" is hidden. Only when the "Battery Type" is selected as lithium battery will the "Protocol Number" appear.
- After selecting the "Battery Type" as lithium battery, select the "Protocol Number" according to the lithium battery protocol table.
- After the "Protocol Number" is selected, "SOC or VOL" is displayed as default. You can manually set it as

 VOL according to the actual situations.

The above parameters can be modified separately on the administrator interface, please refer to 2.5.1 Parameter list for detailed settings.

Default value and setting range for BMS related parameters as shown in the below:

Parameter	Default User define	
8. Quick Setting Of BMS Pa	arameters	
		48V battery type: AGM, OPZS, GEL, FLD, LFP15S,
.	FLD	LFP16S, LNCM13S, LNCM14S
Battery Type		24V battery type: AGM, OPZS, GEL, FLD, LFP8S,
		LNCM6S, LNCM7S
Desta del Nordo	40	User define: 1–31
Protocol Number	10	Note: Refer to the Lithium battery protocol file.
SOC Or VOL	VOL	User define: SOC, VOL

2.5.2 Battery work modes

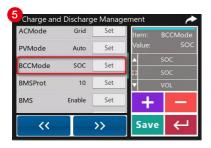
The following table lists the recommended working mode and setting process for different application scenarios. According to your current battery status (such as whether it is a lithium-ion battery pack, whether it has BMS function, whether it has current control function at the end of charge and discharge, etc.), you can reasonably set the parameters to ensure that the battery works in the optimal performance, so as to ensure the safe operation of the system for a long time.

No.	Scenario	Recommended work Mode	Setting Process
1	Non-lithium battery pack	The inverter/charger controls charging and discharging based on the LCD settings.	See Figure 1 "Setting process for non-lithium battery pack"
2	Lithium battery pack with BMS and current control function at the end of charge and discharge Normal communication	The inverter/charger controls charging and discharging based on the read BMS values.	See Figure 2 "Setting process for lithium battery pack with BMS and current control function"
3	Lithium battery pack with BMS, without current control function at the end of charge and discharge Normal communication	The inverter/charger controls charging and discharging based on the LCD settings.	See Figure 3 "Setting process for lithium battery pack with BMS, without current control function"
4	Lithium battery pack with protective board only (no BMS) No communication	The inverter/charger controls charging and discharging based on the LCD settings.	See Figure 4 "Setting process for lithium battery pack with protective board only"

Figure 1 "Setting process for non-lithium battery pack"

When the system adopts non-lithium battery packs (such as AGM, GEL, or FLD batteries), follow the flowchart below to set parameters correctly. The inverter/charger will control charging and discharging based on the LCD settings.

LCD	Parameter	Set value	
Battery Basic	BDCap (Battery Design Capacity)	Set it according to the battery you are actually using.	
Properties	BType (Battery Type)		
Charge and Discharge Management	BCCMode (Battery Charging Control Mode)	To set as "VOLT" or "SOC." And then set the battery voltage control parameters or SOC control parameters.	



- On the home page, click upper-right corner.
- in the
- 2. Enter the password input interface, enter the correct password (the initial password is 000000 by default), and click OK or V to enter the parameter setting interface.

- Battery Basic Properties Status Have Set BDCap 100.0 AH Set ВТуре Set FLD BRV 48 V LBACC 60.0 A << >> Save
- Slide up and down on the current interface, and click **System** to enter the system parameter setting interface.
- 4. Depending on the battery actually used, set "BDCap (Battery Design Capacity) and BType (Battery Type)". After the settings are complete, click Save to issue new parameter value.

5. Click >> to switch to the "Charge and Discharge Management" interface, and set "BCCMode (Battery Charging Control Mode)" to "VOL" or "SOC." After the settings are complete, click Save to issue new parameter value.

• Figure 2 "Setting process for lithium battery pack with BMS and current control function"

When the system adopts a lithium battery pack with BMS and current control function at the end of charge and discharge, and the lithium battery pack can communicate with the inverter/charger normally, follow the flowchart below to set parameters correctly. The inverter/charger controls charging and discharging based on the read BMS values.

LCD	Parameter	Set value
Battery Basic	BDCap (Battery Design Capacity)	Set it according to the battery you are actually using.
Properties	BType (Battery Type)	Note: The battery type must be selected as lithium battery, otherwise the lithium battery data cannot be read.
Charge and	BCCMode (Battery Charging Control Mode)	To set as "VOLT" or "SOC." And then set the battery voltage control parameters or SOC control parameters
Discharge Management	BMSProt (BMS Protocol)	Set the settings according to the actual battery protocol number used.
	BMS (BMS Enable)	Enable
	BMSVolt (BMS Voltage Control)	Enable
	BMSCurr (BMS Current Control)	BMS

1. On the home page, click upper-right corner.

2. Enter the password input interface, enter the correct password (the initial password is 000000 by default), and click to enter the parameter setting interface

3. Slide up and down on the current interface, and click System to enter the system parameter setting interface.

4. Depending on the battery actually used, set "BDCap (Battery Design Capacity) and BType (Battery Type)". After the settings are complete, click Save to issue new parameter value.

5. Click >> to switch to the "Charge and Discharge Management" interface and set "BCCMode (Battery Charging Control Mode), BMSProt (BMS Protocol), BMS (BMS Enable) and BMSVolt (BMS Voltage Control) and BMSCurr (BMS Current Contol)." After the settings are complete, click Save to issue new parameters.

Tip	Please go to EPEVER official website to download the currently supported BMS manufacturers and the BMS parameters.
CAUTION	The inverter/charger will control charging and discharging based on the LCD settings after setting the "BMSCurr (BMS Current Control)" as "Invalid," or the communication between battery and inverter/charger fails. Due to the different charging and discharging characteristics and voltage consistency of lithium batteries from different manufacturers, it is necessary for professionals to guide the use of charging and discharging.

Figure 3 "Setting process for lithium battery pack with BMS, without current control function"

When the system adopts a lithium battery pack with BMS, while without current control function at the end of charge and discharge, and the lithium battery pack can communicate with the inverter/charger normally, follow the flowchart below to set parameters correctly. The inverter/charger controls charging and discharging based on the LCD settings.

LCD	Parameter	Set value
Battery Basic Properties	BDCap (Battery Design Capacity) BType (Battery Type)	Set it according to the battery you are actually using.
Charge and Discharge	BCCMode (Battery Charging Control Mode)	To set as "VOLT" or "SOC." And then set the battery voltage control parameters or SOC control parameters.
Management	BMSProt (BMS Protocol)	Set the settings according to the actual battery protocol number used.
	BMS (BMS Enable)	Enable
	BMSVolt (BMS Voltage Control)	Enable

1. On the home page, click upper-right corner.

2. Enter the password input interface, enter the correct password (the initial password is 000000 by default), and click to enter the parameter setting interface.

- 3. Slide up and down on the current interface, and click System to enter the system parameter setting interface.
- 4. Depending on the battery actually used, set "BDCap(Battery Design Capacity) and BType (Battery Type)." After the settings are complete, click Save to issue new parameter value.

5. Click >>> to switch to the "Charge and Discharge Management" interface and set "BCCMode (Battery Charging Control Mode), BMSProt (BMS Protocol), BMS (BMS Enable) and BMSVolt (BMS Voltage Control)." After the settings are complete, click Save to issue new parameter value.

The inverter/charger will control charging and discharging based on the LCD settings after setting the "BMSCurr (BMS Current Control)" as "Invalid."

• Figure 4 "Setting process for lithium battery pack with protective board only"

When the system adopts a lithium battery pack with protective board only, and the lithium battery pack cannot communicate with the inverter/charger normally (A smart remote temperature sensor is recommended in this scenario. Reserved function, this product is under development.), follow the flowchart below to set parameters correctly. The inverter/charger controls charging and discharging

based on the LCD settings.

LCD	Parameter	Set value	
Battery Basic Properties	BDCap (Battery Design Capacity) Set it according to the battery		
	BType (Battery Type)	actually using.	
Charge and Discharge		To set as "VOLT" or "SOC." And then set	
Management	BCCMode (Battery Charging Control Mode)	the battery voltage control parameters or	
	Charging Control Mode)	SOC control parameters.	

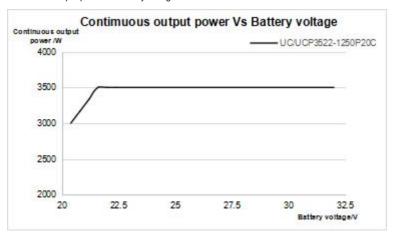
On the home page, click upper-right corner.

2. Enter the password input interface, enter the correct password (the initial password is 000000 by default), and click OK or V to enter the parameter setting interface.

- Slide up and down on the current interface, and click **System** to enter the system parameter setting interface.
- 4. Depending on the battery actually used, set "BDCap(Battery Design Capacity) and BType (Battery Type)." After the settings are complete, click Save to issue new parameter value.

5. Click >>> to switch to the "Charge and Discharge Management" interface and set "BCCMode (Battery Charging Control Mode)." After the settings are complete, click Save to issue new parameters.

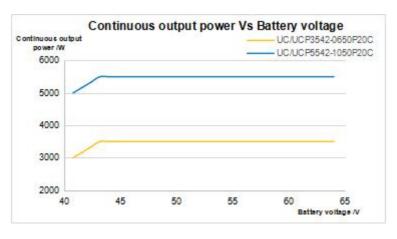
The inverter/charger will control charging and discharging based on the LCD settings after setting the "BMSCurent Select" as "INVALID."

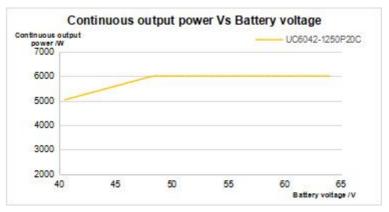

2.5.3 Battery voltage control parameters

1) Lead-acid battery voltage control parameters

The parameters are measured in the condition of 24V/25°C.

Battery Type Voltage control parameters	AGM	OPZS	GEL	FLD	User define
Over Voltage Disconnect Voltage	32.0V	32.0V	32.0V	32.0V	21.5–32V
Charging limit voltage	30.0V	30.0V	30.0V	30.0V	21.5–32V
Over Voltage Reconnect Voltage	30.0V	30.0V	30.0V	30.0V	21.5–32V
Equalize Charging Voltage	29.2V	29.2V		29.6V	21.5-32V
Boost Charging Voltage	28.8V	28.8V	28.4V	29.2V	21.5–32V
Float Charging Voltage	27.6V	27.6V	27.6V	27.6V	21.5–32V
Boost Voltage Reconnect Voltage	26.4V	26.4V	26.4V	26.4V	21.5–32V
Low Voltage Reconnect Voltage	25.2V	25.2V	25.2V	25.2V	21.5–32V
Under Voltage Warning Recover Voltage	24.4V	24.4V	24.4V	24.4V	21.5–32V
Under Voltage Warning Voltage	24.0V	24.0V	24.0V	24.0V	21.5–32V
Low Voltage Disconnect Voltage	22.2V	22.2V	22.2V	22.2V	20.4-32V
Discharging Limit Voltage	20.3V	20.3V	20.3V	20.3V	Fix value


When the battery voltage is lower than 21.6V, the battery inverter output must be derated. Curve of Continuous output power Vs battery voltage for UC3522-1250P20C/UCP3522-1250P20C as below:



The parameters are measured in the condition of 48V/25 °C.

Battery Type Voltage control parameters	AGM	OPZS	GEL	FLD	User define
Over Voltage Disconnect Voltage	64.0V	64.0V	64.0V	64.0V	42.8–64V
Charging limit voltage	60.0V	60.0V	60.0V	60.0V	42.8–64V
Over Voltage Reconnect Voltage	60.0V	60.0V	60.0V	60.0V	42.8–64V
Equalize Charging Voltage	58.4V	58.4V		59.2V	42.8–64V
Boost Charging Voltage	57.6V	57.6V	56.8V	58.4V	42.8–64V
Float Charging Voltage	55.2V	55.2V	55.2V	55.2V	42.8–64V
Boost Voltage Reconnect Voltage	52.8V	52.8V	52.8V	52.8V	42.8–64V
Low Voltage Reconnect Voltage	50.4V	50.4V	50.4V	50.4V	42.8–64V
Under Voltage Warning Recover Voltage	48.8V	48.8V	48.8V	48.8V	42.8–64V
Under Voltage Warning Voltage	48.0V	48.0V	48.0V	48.0V	42.8–64V
Low Voltage Disconnect Voltage	44.4V	44.4V	44.4V	44.4V	40.8–64V
Discharging Limit Voltage	40.7V	40.7V	40.7V	40.7V	Fix value

When the battery voltage is lower than 43.2V, the battery inverter output must be derated. Curve of Continuous output power Vs battery voltage for UC5542-1050P20C/UCP5542-1050P20C, UC3542-0650P20C/UCP3542-0650P20C, UC6042-1250P20C as below:

The following rules must be obeyed when setting the Lead-acid battery voltage control parameters.

- A. Over Voltage Disconnect Voltage > Charging Limit Voltage ≥ Equalize Charging Voltage ≥ Boost Charging Voltage ≥ Float Charging Voltage > Boost Voltage Reconnect Voltage
- B. Over Voltage Disconnect Voltage > Over Voltage Reconnect Voltage
- C. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage
- D. Under Voltage Warning Recover Voltage > Under Voltage Warning Voltage ≥ Discharging Limit Voltage
- E. Boost Voltage Reconnect Voltage > Low Voltage Reconnect Voltage
- 2) Lithium battery voltage control

Rettern Torre	LFP					
Battery Type	24V	24V system		48V system		
Voltage control parameters	LFP8S	User Define	LFP15S	LFP16S	User Define	
Over Voltage Disconnect Voltage	29.6V	21.5–32V	55.5V	59.2V	42.8–64V	
Charging Limit Voltage	29.2V	21.5–32V	54.7V	58.4V	42.8–64V	
Over Voltage Reconnect Voltage	29.2V	21.5–32V	54.7V	58.4V	42.8–64V	
Equalize Charging Voltage	28.5V	21.5–32V	53.5V	57.1V	42.8–64V	
Boost Charging Voltage	28.5V	21.5–32V	53.5V	57.1V	42.8–64V	
Float Charging Voltage	27.2V	21.5–32V	51.0V	54.4V	42.8–64V	
Boost Voltage Reconnect Voltage	26.6V	21.5–32V	49.9V	53.2V	42.8–64V	
Low Voltage Reconnect Voltage	26.0V	21.5–32V	48.7V	52.0V	42.8–64V	

Under Voltage Warning Recover Voltage	25.6V	21.5–32V	48.0V	51.2V	42.8–64V
Under Voltage Warning Voltage	24.8V	21.5–32V	46.5V	49.6V	42.8–64V
Low Voltage Disconnect Voltage	23.2V	21.5–32V	43.5V	46.4V	42.8–64V
Discharging Limit Voltage	22.0V	Fix value	41.2V	44.0V	Fix value

	LFP					
Battery Type	24V system			48V system		
Voltage control parameters	LNCM6S	LNCM7S	User Define	LNCM13S	LNCM14S	User Define
Over Voltage Disconnect Voltage	25.8V	30.1V	21.5–32V	55.9V	60.2V	42.8–64V
Charging Limit Voltage	25.5V	29.7V	21.5–32V	55.2V	59.5V	42.8–64V
Over Voltage Reconnect Voltage	25.5V	29.7V	21.5–32V	55.2V	59.5V	42.8–64V
Equalize Charging Voltage	24.8V	28.9V	21.5–32V	53.8V	57.9V	42.8–64V
Boost Charging Voltage	24.8V	28.9V	21.5–32V	53.8V	57.9V	42.8–64V
Float Charging Voltage	24.0V	28.0V	21.5–32V	52.0V	56.0V	42.8–64V
Boost Voltage Reconnect Voltage	23.5V	27.5V	21.5–32V	51.0V	55.0V	42.8–64V
Low Voltage Reconnect Voltage	22.2V	25.9V	21.5–32V	48.1V	51.8V	42.8–64V
Under Voltage Warning Recover Voltage	21.6V	25.2V	21.5–32V	46.8V	50.4V	42.8–64V
Under Voltage Warning Voltage	21.0V	24.5V	21.5–32V	45.5V	49.0V	42.8–64V
Low Voltage Disconnect Voltage	21.5V	22.4V	21.5–32V	42.8V	44.8V	42.8–64V
Discharging Limit Voltage	18.6V	21.7V	Fix value	40.3V	43.4V	Fix value

When setting the Lithium battery voltage control parameters, the following rules must be obeyed.

- A. Over Voltage Disconnect Voltage < Over Charging Protection Voltage (BMS Circuit Protection Modules) minus 0.2V</p>
- B. Over Voltage Disconnect Voltage > Charging Limit Voltage ≥ Equalize Charging Voltage ≥ Boost
 Charging Voltage ≥ Float Charging Voltage > Boost Voltage Reconnect Voltage
- C. Over Voltage Disconnect Voltage > Over Voltage Reconnect Voltage
- D. Boost Voltage Reconnect Voltage > Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage
- E. Under Voltage Warning Recover Voltage > Under Voltage Warning Voltage ≥ Discharging Limit Voltage
- F. Low Voltage Disconnect Voltage ≥ Over Discharging Protection Voltage (BMS Circuit Protection Modules) plus 0.2V

The BMS circuit protection module's voltage control accuracy must be at least ±0.2V. The [Over Voltage Disconnect Voltage] shall be lower than the protection voltage of the BMS circuit protection module. In contrast, the [Low Voltage Disconnect Voltage] shall be higher. The increased voltage of the [Over Voltage Disconnect Voltage] and the [Low Voltage Disconnect Voltage] is determined by the control accuracy of the BMS circuit protection module.

3 Single Installation

3.1 Attention

- Please read the manual carefully to familiarize yourself with the installation steps.
- Be very careful when installing the batteries, especially flooded lead-acid batteries. Please wear eye
 protection, and have fresh water available to rinse if contact with battery acid.
- · Keep the battery away from any metal objects, which may cause a short circuit of the battery.
- Combustible and harmful gases may come out from the battery during charging. Ensure the ventilation condition is good.
- This inverter/charger is wall-mounted. Consider whether the wall's bearing capacity can meet the requirements.
- Ventilation is highly recommended if mounted in an enclosure. Never install the inverter/charger in a sealed enclosure with flooded batteries! Battery fumes from vented batteries will corrode and destroy the inverter/charger circuits.
- The inverter/charger can work with lead-acid and lithium batteries within its control scope.
- Ensure all switches and breakers are disconnected before wiring. You operate the inverter/charger
 after checking that all wiring is correct.
- Loose connections and corroded wires may produce high heat that can melt wire insulation, burn surrounding materials, or even cause a fire. Ensure tight connections, use cable clamps to secure cables, and prevent them from swaying in motion.
- Select the system connection cables according to the current density no greater than 5A/mm².
- The inverter/charger is for indoor installation only. Do not install the inverter/charger in a harsh environment such as humid, salt spray, corrosion, greasy, flammable, explosive, or dust accumulative
- After turning off the switch, high voltage still exists inside the inverter/charger. Do not open or touch
 the internal devices; wait ten minutes before conducting related operations.
- The input terminal of the battery on the inverter/charger has the function of anti-reverse connection
 protection, but it is only effective when it is not connected to PV or Utility. Please strictly follow the
 operation and avoid frequent operations in fault.
- The inverter/charger has anti-reverse protection circuit at the PV input terminal.

1. The short-circuit current of the PV array must comply with the "PV Maximum Short-circuit Current" in chapter <u>9 Specifications</u>. The reverse connection time should not exceed 5 minutes, avoid frequent operations in fault.

2. The PV array must first be connected to a 500VDC or above circuit breaker with arc extinguishing function, and then connected to the inverter/charger. If the PV is reversed, disconnect the external circuit breaker first, and then disconnect the PV array terminal (such as the MC4 terminal) or the PV input terminal of the inverter/charger. Otherwise, an electric arc will be generated, causing damage to the PV array or the inverter/charger.

- Utility input and AC output are high voltage. Please do not touch the wiring connection.
- · When the fan is working, please do not touch it to avoid injury.

3.2 Wire and breaker size

The wiring and installation methods must conform to all national and local electrical code requirements.

Recommended PV wire and breaker size

Since the PV output current varies with the PV module's size, connection method, or sunlight angle, the minimum wire size can be calculated by the PV Isc (Max. short circuit current). Please refer to the Isc value in the PV module's specifications. When the PV modules are connected in series, the total Isc equals any PV module's Isc. When the PV modules are connected in parallel, the total Isc equals the sum of the PV module's Isc. The PV array's Isc must not exceed the maximum PV input current. For max. PV input current and max. PV wire size, please refer to the table below:

Model	PV wire size	Circuit breaker	
UC3522-1250P20C	4		
UC3542-0650P20C	4mm²/11AWG	2P—20A (with arc extinguishing function)	
UCP3522-1250P20C	200-000-		
UCP3542-0650P20C	6mm ² /10AWG	2P—25A (with arc extinguishing function)	
UC6042-1250P20C	8mm²/8AWG	2P—40A (with arc extinguishing function)	

When two PV arrays are connected independently, the wire and circuit breaker size of each PV array are as follows:

Model	PV wire size	Circuit breaker
UC5542-1050P20C	4	
UC6042-1250P20C	4mm²/11AWG	2P—20A (with arc extinguishing function)
UCP5542-1050P20C	6mm ² /10AWG	2P—25A (with arc extinguishing function)

When two PV arrays are connected in parallel, the wire and circuit breaker size are as follows:

Model	PV wire size	Circuit breaker
UC5542-1050P20C UC6042-1250P20C	10mm ² /7AWG	2P—40A (with arc extinguishing function)
UCP5542-1050P20C	13mm²/6AWG	2P—50A (with arc extinguishing function)

When the PV modules are connected in series, the total voltage must not exceed the max. PV open circuit voltage 500V (At minimum operating environment temperature), or 440V (At 25° C).

> Recommended Utility wire size

Model	Utility wire size	Circuit breaker		
UC3522-1250P20C				
UC3542-0650P20C	6mm²/10AWG	2P—25A		
UCP3522-1250P20C		2F—25A		
UCP3542-0650P20C				
UC5542-1050P20C	10mm²/7AWG			
UC6042-1250P20C		2P—40A		
UCP5542-1050P20C				

The utility input has the circuit breaker already; no need to add any more.

> Recommended battery wire and breaker size

Model	Battery wire size	Circuit breaker
UC3522-1250P20C		
UC5542-1050P20C		
UC6042-1250P20C	35 mm²/2AWG	2P—200A
UCP3522-1250P20C		
UCP5542-1050P20C		
UC3542-0650P20C	34444	05 4054
UCP3542-0650P20C	20mm ² /4AWG	2P—125A

The recommended battery breaker size is selected when the battery terminals are not connected to any additional inverter.

Recommended load wire size

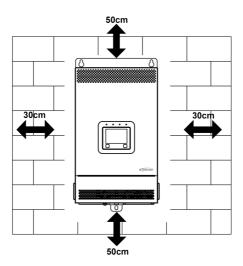
Model	Load wire size	Circuit breaker
UC3522-1250P20C		
UC3542-0650P20C	6mm²/10AWG	2P—25A
UCP3522-1250P20C		2P—25A
UCP3542-0650P20C		
UC5542-1050P20C	10mm²/7AWG	
UC6042-1250P20C		2P—40A
UCP5542-1050P20C		

- The wire size is only for reference. Suppose a long distance exists between the PV
 array, the inverter/charger, and the battery. In that case, larger wires shall be used
 to reduce the voltage drop and improve the system's performance.
- The above wire and circuit breaker sizes are for reference only; please choose a suitable wire and circuit breaker according to the actual situation.

3.3 Mounting the inverter/charger

WARNING

Risk of explosion! Never install the inverter/charger in a sealed enclosure with flooded batteries! Do not install the inverter/charger in a confined area where the battery gas can accumulate.



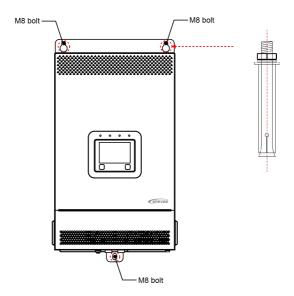
CAUTION

The inverter/charger can be fixed to the concrete and solid brick walls, while it cannot be fixed to the hollow brick wall.

The inverter/charger requires at least 30cm of clearance right and left, and 50cm of clearance above and below.

Step1: Determine the installation location and heat-dissipation space. The inverter/charger requires at least 30cm of clearance right and left, and 50cm of clearance above and below.

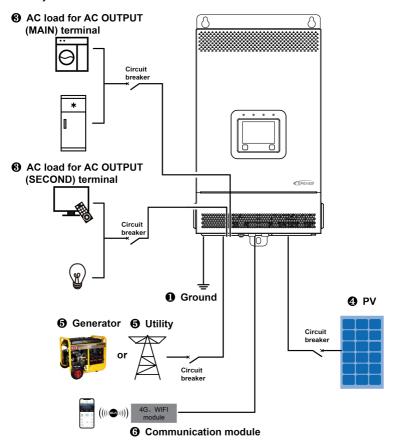
Step2: According to the installation position marked with the mounting plate 1, drill two M10 holes with an electric drill

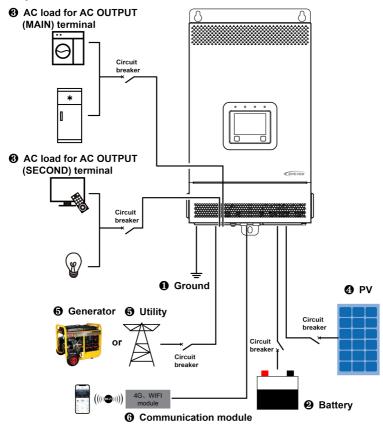

Step3: Insert the screws of the M8 bolts and the steel pipes into the two M10 holes.

Step4: Install the inverter/charger and determine the installation position of the M10 hole (located at the bottom of the inverter/charge).

Step5: Remove the inverter/charger and drill an M10 hole according to the position determined in step4.

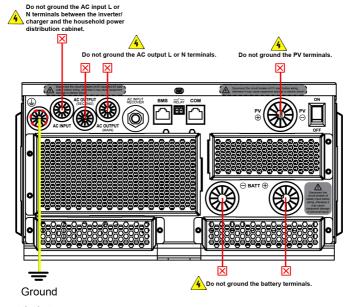
Step6: Insert the screw of the M8 bolt and the steel pipe into the M10 hole.


Step7: Install the inverter/charger and secure the nuts with 3 sleeves.


3.4 Wiring the inverter/charger

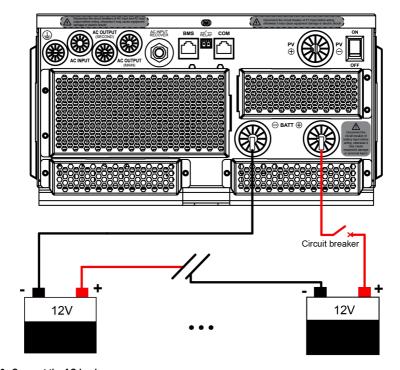
Connect the inverter/charger in the order of "Oround > Battery > OLOad > PV > PV > SUIT > OUT > OPT > OUT >

No battery mode


· Battery mode

1. Grounding

The inverter/charger has a dedicated grounding terminal, which must be grounded reliably. The grounding wire size must be consistent with the recommended load wire size. The grounding connection point shall be as close as possible to the inverter/charger, and the total grounding wire shall be as short as possible.


	☑ Do not ground the battery terminals.				
×	Do not ground the PV terminals.				
_	Do not ground the AC input L or N terminals between the inverter/charger				
No grounding	and the household power distribution cabinet.				
	Do not ground the AC output L or N terminals.				
\square	The cabinet of the inverter/charger is connected to earth through the earth				
Grounding	rail, along with the AC input and output's PE (Protective Earth) terminal.				

2. Connect the battery

- Please disconnect the circuit breaker before wiring and ensure that the leads of
 the "+" and "-" poles are polarity correctly. The "+" and "-" poles on the
 inverter/charger has no anti-reverse protection circuit at the DC input terminal, it is
 prohibited to reverse connect the battery.
- A circuit breaker must be installed on the battery side. For selection, please refer to chapter 3.2 Wire and breaker size.
- Disconnect the circuit breaker of battery input before wiring, otherwise it may cause equipment damage or personal injury!

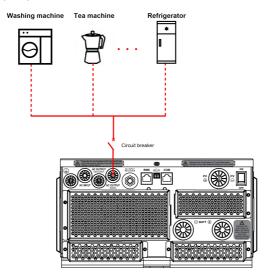
3. Connect the AC load

- Risk of electric shock! When wiring the AC load, please disconnect the circuit breaker and ensure that the poles' leads are connected correctly.
- The AC loads shall be determined by the continuous output power of the inverter/charger. The AC load's surge power must be lower than the instantaneous surge power of the inverter/charger, or the inverter/charger will be damaged.
- If inductive loads such as motors, or a bidirectional transfer switch is connected to the AC output terminal, a separate overvoltage and overcurrent protector (VA-Protector) needs to be installed at the AC output terminal.
- Disconnect the circuit breakers of AC input and AC load output before wiring, otherwise it may cause equipment damage or electric shock!

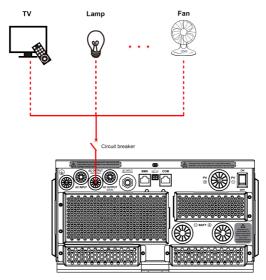
Note: The output power of the AC output main and second power-off interfaces is the same, but the battery voltage is different for the power off. The battery voltage is higher when the main AC output is disconnected. Please connect your load to the appropriate AC output interface according to the actual situation.

Control logic for main and second power off of AC output

- When the battery voltage is lower than the UVW (Under Voltage Warning Voltage), the AC output main power-off relay will be disconnected after a 5-second delay. Once the battery voltage rises above the LVR (Low Voltage Reconnect Voltage), the AC output main power-off relay will be reconnected after a 5-minute delay, restoring the output of the AC output main load interface.
- When the battery voltage is lower than the LVD (Low Voltage Disconnect Voltage), there is no output at the AC output second load interface. Once the battery voltage rises above the LVR (Low Voltage Reconnect Voltage), restoring the output of the AC output second load interface.
- When the battery voltage is between UVW and LVR for the first power-up, the AC output main power-off relay will be connected, restoring the output of the AC output main load interface.
- If the UVW is set higher than the LVR, the AC output main power-off relay will be forcibly disconnected after a 5-second delay. Once the UVW and LVR are correctly set, the AC output main power-off relay will be reconnected after a 5-minute delay, restoring the output of the AC output main load interface.
- When the Utility is connected, the AC output main power-off relay remains connected (independent of battery voltage). Once the Utility is disconnected, the control logic of (1) to (4) is restored.
- (i) In the no battery mode, the AC output main power-off relay remains connected (independent of battery voltage), ensuring continuous output at the AC output main load interface.


If there is no output at the AC output main load interface, please follow the steps below to troubleshoot:

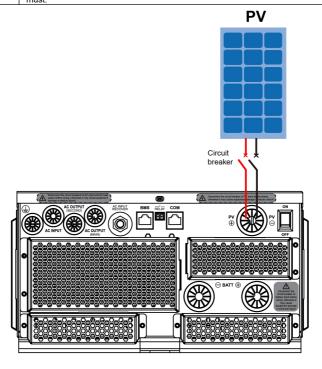
1. Check whether the battery voltage is lower than the "UVW" during no-load output. If the battery voltage is lower than the "LVR," please charge the battery. When the battery voltage is higher than the "LVR," restoring the output of the AC output main load interface.



2. If the battery voltage is higher than the "UVW" during no-load output, but there is no output or abnormal output after load is ON. Please reduce loads connected to the AC output main load interface, or increase the battery capacity, or increase the voltage difference between the "UVW" and the "LVR" appropriately, until the load output is normal.

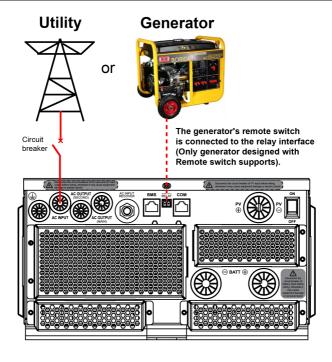
AC OUTPUT (MAIN) connection

• AC OUTPUT (SECOND) connection

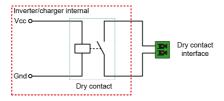

4. Connect the PV modules

- Risk of electric shock! The PV array can generate dangerous high-voltage!
 Disconnect the circuit breaker before wiring, and ensure that the leads of "+" and "-" poles are connected correctly.
- Disconnect the PV input circuit breaker before wiring, otherwise it may cause equipment damage or electric shock!
- It is forbidden to connect the positive and negative poles of the PV with the ground;
 otherwise, the inverter/charger will be damaged.

Suppose the inverter/charger is used in an area with frequent lightning strikes. In that case, install an external surge arrester at the PV input and utility input terminals is a must.


5. Connect the Utility or generator

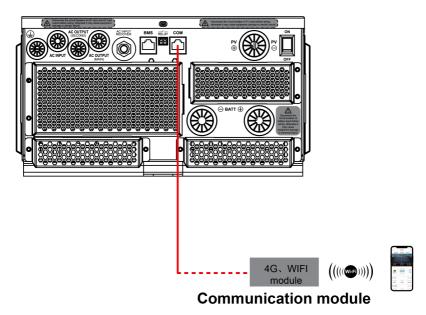
- Risk of electric shock! The Utility input can generate dangerous high-voltage!
 Disconnect the circuit breaker or fast-acting fuse before wiring, and ensure that the poles' leads are connected correctly.
- After the Utility is connected, the PV and battery cannot be grounded. In contrast, the inverter/charger cover must be grounded reliably (to shield the outside electromagnetic interference effectively and prevent the cover from causing electric shock to the human body).


There are various types of oil generators with complex output conditions. It is recommended to use the inverter oil generator. If non-inverter oil generators are used, they must be tested in practice before use.

Dry contact interface:

♦ Function:

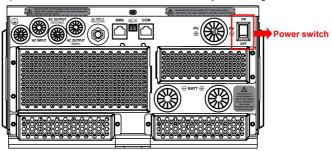
The dry contact interface can turn on/off the generator and is connected parallel with the generator's switch.


♦ Working principle:

When the battery voltage is less than or equal to the *DCT ON (Dry Contact ON Voltage)* the dry contact is connected. Its coil is energized. The dry contact can drive loads of no more than 125VAC/1A, 30VDC/1A. According to different battery types of the inverter charger, the default values of the *DCT ON (Dry Contact ON Voltage)* and the *DCT OFF (Dry Contact OFF Voltage)* are different. Please refer to the chapter 2.5.1 Parameters list for details.

6. Connect optional accessories

Connect the communication module


Connect the Bluetooth, 4G, or TCP module to the RS485 com. port. End-users can remote monitor the inverter/charger or modify related parameters on the phone APP. Detailed setting methods, refer to user manual for the Bluetooth, 4G, or TCP module.

Note: For the specific communication modules supported, please refer to the accessories list file.

3.5 Operate the inverter/charger

- Step 1: Double-check whether the wire connection is correct.
- Step 2: Connect the battery circuit breaker.
- Step 3: Turn on the power switch. The LCD will be lit, which means the system running is normal.

WARNING

- Connect the battery circuit breaker first. After the inverter/charger normally works, connect the PV array and plug the utility's socket. Otherwise, we won't assume any responsibility for not following the operation.
- The AC output is ON by default after the inverter/charger is powered. Before turning on the power switch, ensure the AC output is connected to loads correctly, and no safety hazard exists.

Step 4: Set parameters by the buttons.

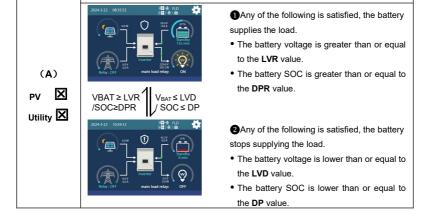
For detailed parameters setting, refer to chapter 2.5 Parameters setting.

Step 5: Use the inverter/charger.

Connect the load circuit breaker, the PV array circuit breaker, and plug the utility's socket in sequence. After the AC output is normal, turn on the AC loads one by one. Do not turn on all loads simultaneously to avoid protection action due to a large transient impulse from the current. The inverter/charger will perform normal work according to the set working mode. See chapter 2.4 Real-time data.

- When supplying power for different AC loads, turning on the load with a larger impulse current first is recommended. After the load output is stable, turn on the load with a smaller impulse current later.
- If the inverter/charger cannot work properly or the LCD/ indicator shows an abnormality, please refer to chapter <u>7 Troubleshooting</u> or contact our after-sales.

4 Working modes

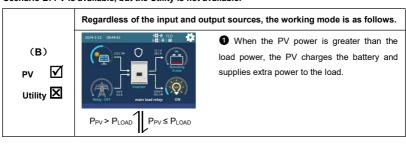

4.1 Abbreviation

Abbreviation	Instruction					
P _{PV}	PV power					
P _{LOAD}	Load power					
V _{BAT}	Battery voltage					
LVD	Low Voltage Disconnect Voltage					
LVR	Low Voltage Reconnect Voltage					
DP	Low Energy Disconnect SOC					
DPR	Low Energy Disconnect Recover SOC					
AUX OFF	Auxiliary module OFF voltage (namely, Utility charging OFF voltage)					
AUX ON	Auxiliary module ON voltage (namely, Utility charging ON voltage)					
UAC OFF	Utility Charging OFF SOC					
UAC ON	Utility Charging ON SOC					
LBACC	Local Battery Available Charging Current					
	The battery charging state, which indicates the ratio of the current storage					
soc	capacity dividing the maximum storage capacity. This value is automatically					
	read from the BMS and displayed on the "BAT DATA" interface.					
PV>BP>BT	Discharging Mode: PV>Bypass>Battery					
PV>BT>BP	Discharging Mode: PV>Battery>Bypass					
BP>PV>BT	Discharging Mode: Bypass>PV>Battery					

4.2 Off-Grid working modes

4.2.1 Battery mode

Scenario A: Both PV and Utility are not available.

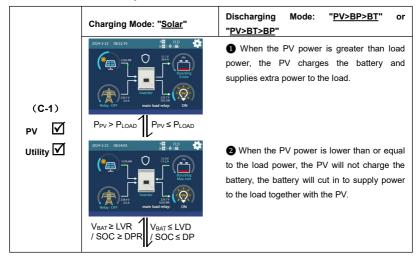


 Set the "BCCMode" as "VOL," the working mode is determined by the battery voltage value.

Regardless of the input and output sources, the working mode is as follows.

- Set the "BCCMode" as "SOC," the working mode is determined by the battery SOC. Before using the SOC mode, set the "BCCMode" as "VOL" first. Because the battery SOC value will be more accurate after a full charge-discharge cycle in the "VOL" mode.
- For setting the "BCCMode", refer to chapter 2.5.1 Parameters list.

Scenario B: PV is available, but the Utility is not available.


When the PV power is lower than or equal to the load power, the PV will not charge the battery, the battery will cut in to supply power to the load together with the PV.

Any of the following is satisfied, the PV and the battery stop supplying power to the load. The PV charges the battery only.

- The battery voltage is lower than or equal to the LVD value.
- The battery SOC is lower than or equal to the DP value.

Note: When the battery voltage is greater than or equal to the LVR value, or the battery SOC is greater than or equal to the DPR value, the working mode returns to state 2.

Scenario C: Both PV and Utility are available.

- 3 Any of the following is satisfied, the Utility supplies power to the load, and the PV prioritizes charging the battery.
- The battery voltage is lower than or equal to the LVD value.
- The battery SOC is lower than or equal to the **DP** value.

Note: When the battery voltage is greater than or equal to the LVR value, or the battery SOC is greater than or equal to the DPR value, the working mode returns to state 2.

(C-2)

Utility 🗹

Charging Mode: "Solar"

Discharging Mode: "BP>PV>BT"

The Utility supplies power to the load, and the PV charges the battery only.

1 When the PV power is greater than the

load power, the PV charges the battery and

supplies extra power to the load.

(C-3)

Utility 🗹

Charging Mode: "Solar > Grid"

Discharging "PV>BT>BP"

Mode: "PV>BP>BT" or

2 When the PV power is lower than or equal to the load power, the PV will not charge the battery, the battery will cut in to supply power to the load together with the PV.

V_{BAT}≥ AUX OFF 1 V_{BAT}≤ AUX ON / SOC≥ UAC OFF J/ SOC≤ UAC ON

- 3 Any of the following is satisfied, the Utility supplies power to the load and charges the battery together with the PV.
- The battery voltage is lower than or equal to the AUX ON value.
- The battery SOC is lower than or equal to the **UAC ON** value.

Note: When the battery voltage is greater than or equal to the **AUX OFF** value, or the battery SOC is greater than or equal to the **UAC OFF** value, the working mode returns to state 2.

(C-4)

... IZI

Utility 🗹

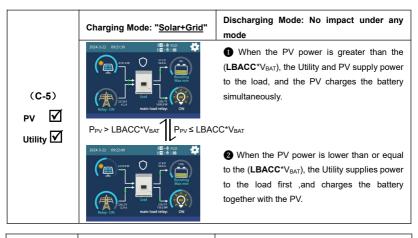
Charging Mode: "Solar > Grid"

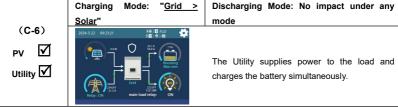
Discharging Mode: "BP>PV>BT"

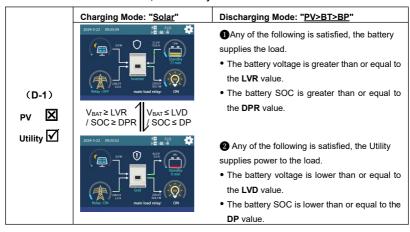
• When the PV power is greater than the (LBACC*V_{RAT}), the Utility and PV supply

(LBACC*V_{BAT}), the Utility and PV supply power to the load, and the PV charges the battery at the same time.

P_{PV} > LBACC*V_{BAT} P_{PV} ≤ LBACC*V_{BAT}


When the PV power is lower than or equal to the (LBACC*V_{BAT}), the Utility supplies power to the load and the PV charges the battery.


V_{BAT}≥ AUX OFF V_{BAT}≤ AUX ON / SOC ≥ UAC OFF / SOC ≤ UAC ON


- 3 Any of the following is satisfied, the Utility supplies power to the load and charges the battery together with the PV.
- The battery voltage is lower than or equal to the AUX ON value.
- The battery SOC is lower than or equal to the UAC ON value

Note: When the battery voltage is greater than or equal to the **AUX OFF** value, or the battery SOC is greater than or equal to the **UAC OFF** value, the working mode returns to state **2**.

Scenario D: The PV is not available, but the Utility is available.

(D-2)

Charging Mode: "Solar"

Discharging Mode: "PV>BP>BT" "BP>PV>BT"

or

Utility 🗹

The Utility supplies power to the load.

(D-3)

Charging Mode: "Solar > Grid"

Discharging Mode: "PV>BT>BP"

Utility 🗹

- Any of the following is satisfied, the battery supplies the load.
- The battery voltage is higher than or equal to the AUX OFF value.
- The battery SOC is greater than or equal to the UAC OFF value.

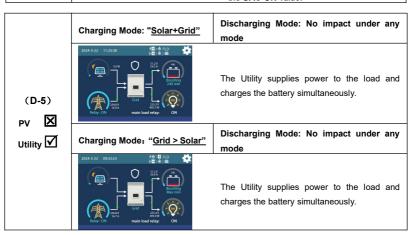
V_{BAT}≤ AUX ON V_{BAT}≥ AUX OFF ' / SOC ≥ UAC OFF SOC ≤ UAC ON

- 2 Any of the following is satisfied, the Utility supplies power to the load and charges the battery simultaneously.
- The battery voltage is lower than or equal to the AUX ON value.
- The battery SOC is lower than or equal to the UAC ON value.

(D-4)

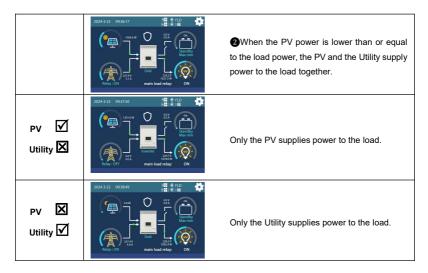
Utility 🗹

Charging Mode: "Solar > Grid"


Discharging Mode: "PV>BP>BT" or "BP>PV>BT"

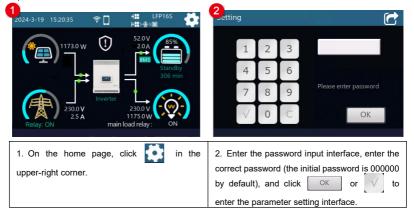
- 1 Any of the following is satisfied, the Utility supplies power to the load.
- The battery voltage is greater than or equal to the AUX OFF value.
- The battery SOC is greater than or equal to the UAC OFF value.

V_{BAT}≤ AUX ON / SOC ≤ UAC ON V_{BAT}≥AUX OFF ' / SOC≥UAC OFF


- ②Any of the following is satisfied, the Utility supplies power to the load and charges the battery simultaneously.
- The battery voltage is lower than or equal to the **AUX ON** value.
- The battery SOC is lower than or equal to the UAC ON value.

4.2.2 No battery mode

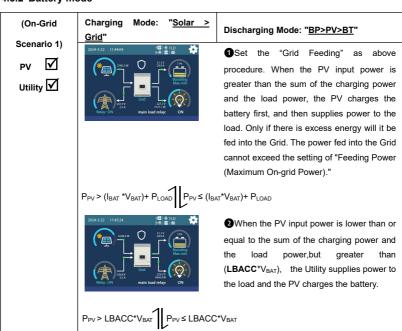
Note: Under the no battery mode, the "Charging Mode" and "Discharging Mode" settings will not take effect.



4.3 On-Grid working modes

4.3.1 On-Grid operation procedure

Set the "Grid Feeding (Grid Switch)" as "Enable" and set "Feeding Power (Maximum On-grid Power)" as required on the LCD.




- Slide up and down on the current interface, and click **System** to enter the system parameter setting interface.
- 4. Click >>> to switch to the "Advanced Battery Properties" interface, set "Grid Feeding" to "Enable", and set "Feeding Power (Maximum On-grid Power)." After the settings are completed, click Save to issue new parameter values.

4.3.2 Battery mode

When the PV power is lower than or equal to (LBACC*VBAT), the Utility supplies power to the load, and the PV charges the battery.

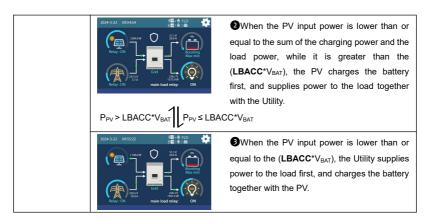
- Any of the following is satisfied, the Utility supplies power to the load and charges the battery together with the PV.
- The battery voltage is lower than or equal to the AUX ON value.
- The battery SOC is lower than or equal to the UAC ON value.

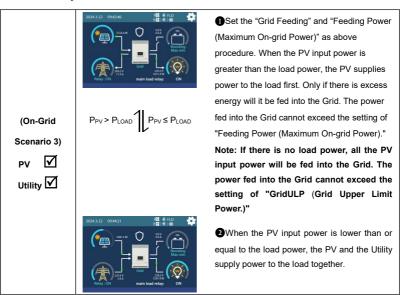
Note: When the battery voltage is greater than or equal to the **AUX OFF** value, or the battery SOC is greater than or equal to the **UAC OFF** value, the working mode returns to state **3**.

Note: When the charging mode is set to "Solar > Grid", the inverter/charger can enter the On-Grid working mode only under the discharge mode of "BP > PV > BT;" other discharge modes cannot achieve the On-Grid.

(On-Grid Scenario 2)

PV V

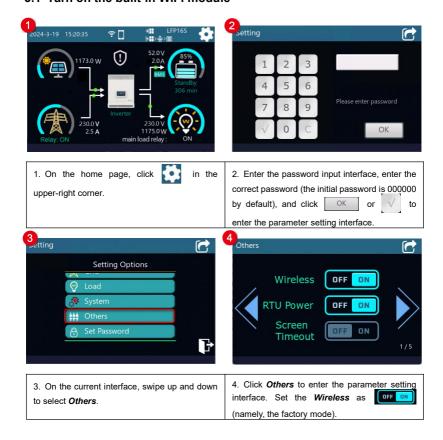

Charging Mode: "Solar+Grid"


Discharging Mode: No impact under any mode

①Set the "Grid Feeding" and "Feeding Power (Maximum On-grid Power)" as above procedure. When the PV input power is greater than the sum of the charging power and the load power, the PV supplies power to the load first, and then charges the battery. Only if there is excess energy will it be fed into the Grid. The power fed into the Grid cannot exceed the setting of "Feeding Power (Maximum On-grid Power)."

P_{PV} > (I_{BAT} *V_{BAT})+ P_{LOAD} P_{PV} ≤ (I_{BAT} *V_{BAT})+ P_{LOAD}

4.3.3 No battery mode



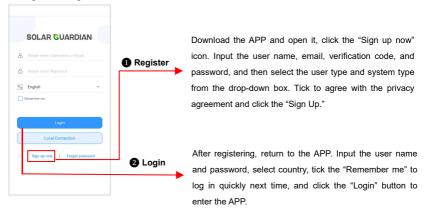
Note: The On-Grid working mode must be carried out with both PV input and Grid input. When

[&]quot;ACmode" is set as "Oil," the inverter/charger cannot be connected to the grid.

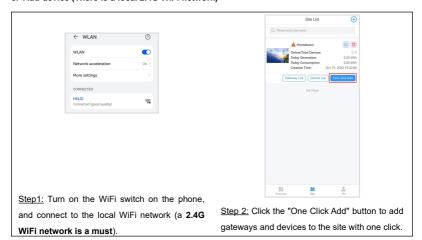
5 Operation for built-in WiFi module

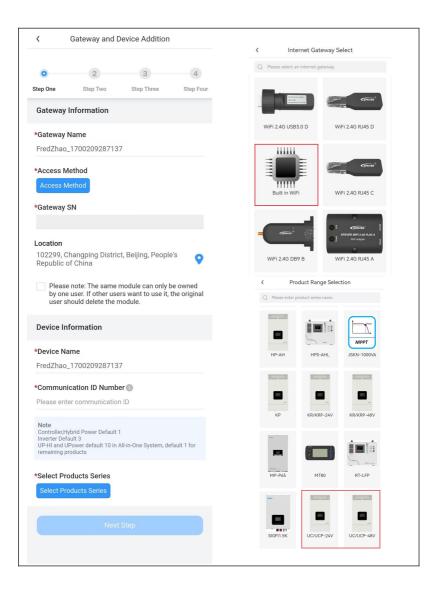
5.1 Turn on the built-in WiFi module

5.2 Remote monitor via APP


Note: The WiFi adapter only supports the Solar Guardian and cannot be connected to other servers.

Add the WiFi adapter and the connected device to the cloud server by website (https://hncloud.epsolarpv.com) or Solar Guardian APP. Then you will be able to monitor the device and set parameters by PC or APP (the following takes APP as an example)


1. Download APP



2. Register & Login

3. Add device (There is a local 2.4G WiFi network)

Step 3: Enter the "Gateway and Device Addition" interface.

- 1. Fill in the gateway related information.
 - (1) Gateway name: The APP generates a default name, which the user can modify to any desired
 - (2) Access method: Select "Built in WiFi".
 - (3) Gateway SN: Get the 22-character SN by scanning the QR $code^{\scriptsize{\scriptsize{\scriptsize{\scriptsize{1}}}}}$ on the inverter/charger's label or manually entering it.
 - (4) Location: On the map, select the geographical location where the gateway is located. It is not required.
 - (5) Information prompt: Check the information prompt, and the same gateway can only be used by one account.
- 2. Fill in the relevant information of the device.
 - (1) Device name: The APP generates a default name, which the user can modify to any desired name.
 - (2) Communication ID Number: Fill in the correct communication ID number $^{\textcircled{2}}$ according to the device, otherwise the device cannot go online.
 - (3) Select Products series: Select the correct product series according to the user's equipment, otherwise the equipment cannot communicate normally.
- 3. Next step
 - (1) If the "Next Step" button is grayed out and cannot be clicked. Please check whether the information filled in is correct or whether the required fields are completed.
 - (2) Click "Next Step" to enter Network Configuration.
- ① If you choose "Scan QR code to add", please authorize the camera function and scan the QR code on the gateway device. The system automatically verifies the gateway SN; only the gateway added to the production management system can be successfully added to the cloud platform. If the prompt "Gateway already exists" is displayed, please contact technical support for help.

<u>Step 4:</u> Enter the correct router WiFi name and corresponding password. Click "Next Step".

Step 5: Click "WiFi Settings" to connect the mobile phone to the gateway's WiFi hotspot (Name: HN_EPxxx, password: 12345678).

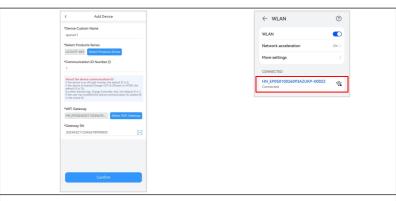
After successful connection, back to the APP and click "Next Step."

<u>Step 6:</u> Click "Network Switch" to enter the "WLAN" interface of the mobile phone .

Step 7: Switch the gateway's WiFi hotspot connected to the mobile phone to HNJD (a network with Internet functions), and then connect to the server to obtain data. Click to return to APP, and click "Finish."

<u>Step 8:</u> After successful addition, enter the device list automatically and click on any device icon.

Step 9: Enter the device data interface to view real-time information, the "Configuration Overview" is displayed by default.


4. Add device (There is no local 2.4G WiFi network)

<u>Step 1:</u> Open the APP and click the "Local Connection" button. "Bluetooth" connection is displayed by default, select the WiFi interface.

 $\underline{\text{Step 2:}} \ \, \text{Enter the WiFi interface, click the} \\ \text{"Add" button, or click the} \ \, \bigoplus \ \, \text{icon.}$

Step 3: Enter the "Add Device" interface.

- 1. Fill in the relevant information of the device.
 - (1) Device Custom Name: The APP generates a default name, which the user can modify to any desired name.
 - (2) Select Products series: Select the correct product series according to the user's equipment, otherwise the equipment cannot communicate normally.
 - (3) Communication ID Number: For series UC or UCP, please select 1.
- 2. Connect to the hotspot of the WiFi module

Turn on the WiFi switch of the mobile phone, connect the mobile phone to the gateway's WiFi hotspot (Name: HN_EPxxx, password: 12345678) and return to the APP after the connection is successful

3. Click "Confirm" to complete the connection between the device and the WiFi module.

Note:

- ① Please turn on the GPS positioning of your phone and allow the APP to obtain location permissions.
- ② The WiFi module hotspot does not have Internet capabilities, please allow your phone to connect to the network.

6 Protections

No.	Protections	Instruction				
1	PV Current/Power Limiting	When the output current/power of PV array is greater than the PV maximum input current/power of the inverter/charger, the inverter/charger will obtain energy from the whole PV array with the PV maximum input current/power. When the maximum open-circuit voltage of the PV array is less than 360V, excess power (up to 2 times the PV maximum input power of the inverter/charger) can be connected to the solar panel. When the maximum open-circuit voltage of the PV panel input is higher than or equal to 360V, excess power cannot be connected to the PV panel.				
2	PV short circuit	When the PV is not charging and short circuit, the inverter/charger is not damaged.				
3	PV Reverse Polarity	The inverter/charger will not be damaged when the PV array is reversely connected, correct the wire connection to resume work. CAUTION: The total short-circuit current of each PV array must be less than the "PV Maximum Short-circuit Current" (see section 9 Specifications), and the reverse connection time should not exceed 5 minutes. Frequent incorrect wiring is strictly prohibited as it may damage the inverter/charger. CAUTION: The PV input terminals must first be connected to a DC circuit breaker with an arc extinguishing function capable of handling 500VDC or higher, and then, connect the PV input terminals to the inverter/charger. If the PV array is reversely connected, it is essential to first disconnect the external circuit breaker, followed by the PV standard terminals, or the PV connection terminals of the inverter/charger. Otherwise, it may result in arcing damage to the PV standard terminals or the inverter/charger.				
4	Utility input over-voltage	When the utility voltage exceeds the set value of "UOD (Utility Over Voltage Disconnect Voltage)" the utility will stop charging and supplying the load.				
5	Utility input under-voltage	When the utility voltage is lower than the set value of "ULVD (Utility Low Voltage Disconnect Voltage)" the utility will stop charging and supplying the load.				
6	Battery over-voltage	When the battery voltage goes higher than the "OVD(Over Voltage Disconnect Voltage)," the PV/Utility will stop charging the battery to protect the battery from being over-charged.				

No.	Protections	Instruction						
7	Battery over-discharge	When the battery voltage goes lower than the "LVD (Low Voltage Disconnect Voltage)," the battery will stop discharging to protect the battery from being over-discharged.						
8	Battery Reverse Polarity	The inverter/charger will not be damaged when the battery is reversely connected, correct the wire connection to resume work. CAUTION: When the PV or Utility is connected, reverse connection of the battery can damage the inverter/charger.						
9	Load output short circuit	The output is turned off immediately in the occurrence of short-circuiting. And then, the output is recovered automatically after a delay time of 5s, 10s, and 15s separately (less than three times recovery within 5 minutes, it will be recounted). The inverter/charger stops working after the 4th protection and can resume working after resetting or restarting. Clear the fault in time because it may damage the inverter/charger permanently. Note: Resetting operationSee chapter 2.4.6 Real-time error code and then click the Clear button to exit the current fault state and resume normal operation.						
10	Device overheating	When the internal temperature overheats, the inverter/charger will stop charging/discharging. The inverter/charger will resume charging/discharging when the internal temperature resumes normal.						
	UC3522-1250P20C	3605W≤P<4550W	4550W≤P<5250W	5250W≤P<7000W	P≥7000W			
	UC3542-0650P20C UCP3522-1250P20C	Protect after 30 seconds	Protect after 10 seconds	Protect after 5 seconds	Protect immediately			
11	UCP3542-0650P20C inverter overload (no Utility)	Note: The output is recovered automatically after a delay time of 5s, 10s, and 15s separately. Inverter/charger stops working after the 4th protection and can resume working after resetting or restarting.						

No.	Protections	Instruction							
	UC3522-1250P20C	3850W≤P<4795W	4795W≤P<5495W		5495W≤P<7000W		P≥7000W		
12	UC3542-0650P20C UCP3522-1250P20C	Protect after 30 seconds	Protect	t after 10 seconds Protect after 5 sec		econds	Protect immediately		
	UCP3542-0650P20C Utility bypass overload (no-Battery mode)	Note: The output is recovered automatically after a delay time of 5s, 10s, and 15s separately. Inverter/charger stops working after the 4th protection and can resume working after resetting or restarting.							
	UC3522-1250P20C	5350W≤P<6295W	6295	5W≤P<6995W	6995W≤P<85	00W	P≥8500W		
	UC3542-0650P20C UCP3522-1250P20C	Protect after 30 seconds			econds	Protect immediately			
13	UCP3542-0650P20C Utility bypass overload (Battery mode)	Note: The output is recovered automatically after a delay time of 5s, 10s, and 15s separately. The inverter/charger stops working after the 4th protection and can resume working after resetting or restarting.							
	UC5542-1050P20C	5665W≤P<6600W		6600W≤P<7700W		P≥7700W			
14	UCP5542-1050P20C	Protect after 30 seconds Protect after 10 seconds			Protect immediately				
	inverter overload (no Utility)	Note: The output is recovered automatically after a delay time of 5s, 10s, and 15s separately. The inverter/charger stops working after the 4th protection and can resume working after resetting or restarting.							
	UC5542-1050P20C	6050W≤P<6985W		6985W≤P<8085W		P≥8085W			
15	UCP5542-1050P20C	Protect after 30 secon	ıds	Protect after 10 seconds			Protect immediately		
	Utility bypass overload (no-Battery mode)	Note: The output is recovered automatically after a delay time of 5s, 10s, and 15s separately. inverter/charger stops working after the 4th protection and can resume working after resetting or restarting.					· ' '		

No.	Protections	Instruction						
	UC5542-1050P20C	8550W≤P<9485W	9485W≤P<10585W	P≥10585W				
16	UCP5542-1050P20C	Protect after 30 seconds	Protect after 10 seconds	Protect immediately				
	Utility bypass overload (Battery mode)	Note: The output is recovered automatically after a delay time of 5s, 10s, and 15s separately. The inverter/charger stops working after the 4th protection and can resume working after resetting or restarting.						
		6120W≤P<6600W	6600W≤P<7980W	P≥7980W				
	UC6042-1250P20C	Protect after 30 seconds	Protect after 10 seconds	Protect immediately				
17	Inverter overload (no Utility)	Note: The output is recovered automatically after a delay time of 5s, 10s, and 15s separately. The						
		inverter/charger stops working after the 4th protection and can resume working after resetting or restarting.						
	UC6042-1250P20C Utility bypass overload (no-Battery mode)	6180W≤P<6985W	6985W≤P<8085W	P≥8085W				
		Protect after 30 seconds	Protect after 10 seconds	Protect immediately				
18		Note: The output is recovered as	utomatically after a delay time of	5s, 10s, and 15s separately. The				
		inverter/charger stops working after t	the 4th protection and can resume wor	king after resetting or restarting.				
	UC6042-1250P20C Utility bypass overload (Battery mode)	8680W≤P<9485W	9485W≤P<10585W	P≥10585W				
		Protect after 30 seconds	Protect after 10 seconds	Protect immediately				
19		Note: The output is recovered at	utomatically after a delay time of	5s, 10s, and 15s separately. The				
		inverter/charger stops working after t	the 4th protection and can resume wor	king after resetting or restarting.				

7 Troubleshooting

After the inverter/charger is powered on, the meter displays the boot interface all the time (unable to enter the home page) and the red "RUN" indicator flashes. It means the communication with the inverter/charger is error. When the above fault occurs, check whether the communication cable is disconnected. If not, don't hesitate to contact our after-sales engineer.

7.1 Battery faults

No.	Fault/Status	Error code	Indicato r	Buzzer	Solution
1	Battery Overvoltage	ER04			Disconnect the charging connection, and check whether the battery voltage is too high. Verify if the actual battery voltage matches the rated battery voltage; or check if the OVD (Over Voltage Disconnect Voltage) is inconsistent with the battery specifications. After the battery voltage drops below the set value of OVR (Over Voltage Reconnect Voltage), the alarm will automatically be cleared.
2	Battery Undervoltage	ER05		The buzzer beeps for 5 seconds continuously and stops.	Disconnect the loads connection, and check whether the battery voltage is too low. After the battery voltage is charged and restored to above the "LVR (Low Voltage Reconnect Voltage)," it will automatically return to

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
3	Battery Over Temperature	ER11	ŀ		Ensure the battery is installed in a cool and well-ventilated place, check that the battery actual charging and discharging current does not exceed the setting values of "LBACC (Local Battery Available Charging Current) and LBADC (Local Battery Available Discharging Current)." It resumes normal work when the battery cools down to below the "BATT OTPR (Battery Over Temperature Protection Recovery)."
4	Battery Overcurrent	ER37			Check that the battery actual charging and discharging current does not exceed the setting values of "LBACC (Local Battery Available Charging Current) and LBADC (Local Battery Available Discharging Current)."
5	Battery Cable Disconnected	ER39	1		Check whether the battery connection is normal, and whether the BMS protection occurs.
6	Battery Undervoltage Alarm	ER50		Intermittent alarm (beeps every 5 seconds until the alarm is cleared).	Check if the battery voltage is lower than the "UVW (Under Voltage Warning Voltage)."
7	Battery Connection Failed	ER56		-	Check if the battery connection is normal and the BMS communication of the lithium battery is normal.

7.2 PV faults

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
1	PV1 Overvoltage	ER15	PV indicator red on	Intermittent beeps	Check if the PV open-circuit voltage is higher than OVP (Over Voltage Protection Voltage). The alarm is released when the PV open-circuit voltage is below OVPR (Over Voltage Protection Reconnect Voltage).
2	PV1 Overcurrent	ER17	PV indicator green on		Turn off the inverter/charger first, wait for 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
3	PV2 Overvoltage	ER18	PV indicator red on	Intermittent beeps	Check if the PV open-circuit voltage is higher than OVP (Over Voltage Protection Voltage). The alarm is released when the PV open-circuit voltage is below OVPR (Over Voltage Protection Reconnect Voltage).
4	PV2 Overcurrent	ER20			
5	PV Module Hardware Fault	ER30	PV indicator		Turn off the inverter/charger first, wait for 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still
6	PV1 Temp Sensor Disconnected	ER43	green on		abnormal, please contact our technical support.
7	PV1 Pre-Charge Timeout	ER52	PV indicator		Turn off the inverter/charger first, wait for 5 minutes and then turn on
8	PV2 Pre-Charge Timeout	ER53	green on		the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.

7.3 Inverter faults

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
1	Inverter Output Overcurrent	ER02			Check if the load actual power exceeds the "Inverter Rated Power (see chapter <u>9 Specifications</u>)," disconnect the load completely and turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
2	Inverter Output Overvoltage	ER07	indicator red ON Intermittent beeps		Check whether the inverter output is higher than the "Over Voltage Protection" (See <u>2.4.4 Load real-time data</u> , click <i>Fun</i> to enter the "Setting Parameters To Display" page to view the value of this parameter). Disconnect the load completely and turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
3	Inverter Over Temperature	ER10			Ensure the inverter/charger is installed in a cool and well-ventilated place.
4	Inverter Hardware Overvoltage	ER22			
5	Inverter Hardware Overcurrent	ER23			Disconnect the load completely and turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes
6	Inverter Voltage OFFSET Error	ER32			normal. If it is still abnormal, please contact our technical support.

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
7	Inverter Current OFFSET Error	ER35			Disconnect the load completely and turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
8	Inverter Temp Sensor Disconnected	ER45	LOAD indicator green ON		Turn off the inverter/charger.Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
9	Inverter Output Undervoltage	ER49	LOAD indicator red ON	Intermittent beeps	Check if the load actual power exceeds the "Inverter Rated Power (see chapter <u>9 Specifications</u>)," disconnect the load completely and turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
10	Boost Module Over Temperature	ER60			Ensure the inverter/charger is installed in a cool and well-ventilated place.

7.4 Utility faults

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
1	Utility Overvoltage	ER08	GRID indicator red on	Intermittent beeps	Check if the utility voltage is exceeds the UOD (Utility Over Voltage Disconnect Voltage), then disconnect the AC input and turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
2	Utility Overcurrent	ER09	red on	Intermittent beeps	Check if the load actual power exceeds the "Inverter Rated Power (see chapter 9 Specifications)," disconnect the load completely and
3	Utility Undervoltage	ER25	GRID indicator red on	-	turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support. Check if the utility voltage is lower than the ULVD (Utility Low Voltage Disconnect Voltage), disconnect the utility input and turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
4	Utility Pre-charge Timeout	ER28	GRID		Check if the utility frequency in between the UFD (Utility Under
5	Utility Relay Adhesion	ER29	indicator green on	Disconnect Frequency) disconnect the utility input and	Frequency Disconnect Frequency) to UOF (Utility Over Frequency Disconnect Frequency) disconnect the utility input and turn off the
6	Utility Frequency Error	ER31	GRID indicator red on	Intermittent beeps	inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.

7.5 Load faults

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
1	Load Current OFFSET Error	ER33			Disconnect the load completely and turn off the
2	Load Over Load	ER48	LOAD	1	inverter/charger. Wait 5 minutes and then turn on the
3	Overload Lockdown	ER55	indicator red ON	Intermittent beeps	inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.

7.6 Other faults for single inverter/charger

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
1	DC Bus Overvoltage	ER00			Turn off the inverter/charger. Wait 5 minutes and then turn on the
2	DC Bus Undervoltage	ER06			inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
	Ambient Over	ER12			Ensure the inverter/charger is installed in a cool and well-ventilated
3	Temperature	ER12			place. Please inspect the anti-dust kit, and clean it if necessary.
4	Battery or Bus	ER21			
4	Hardware Overvoltage	ER21			
5	High Volt Bus	ER24			
5	Hardware Overcurrent	ER24			Turn off the inverter/charger. Wait 5 minutes and then turn on the
6	High Volt Bus Current	ED20			inverter/charger to check if it resumes normal. If it is still abnormal,
6	Abnormal	ER36			please contact our technical support.
7	Boost Drive Error	ER38			
	Auxiliary Power	5540			
8	Supply Abnormal	ER40			

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
9	Environment Temp Sensor Disconnected	ER42			Turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.
10	Low Temperature Charging Limit	ER46			Check whether the ambient temperature is lower than the set
11	Low Temperature Discharging Limit	ER47			"LTSChrg (Low Temperature Stop Charging Temperature) and LTSDischrg (Low Temperature Stop Discharging Temperature)."
12	EEprom Abnormal	ER54			Turn off the inverter/charger. Wait 5 minutes and then turn on the inverter/charger to check if it resumes normal. If it is still abnormal, please contact our technical support.

7.7 BMS faults

No.	Fault/Status	Error code	Indicator	Buzzer	Solution
1	BMS Overvoltage	ER66			
2	BMS Charging Temp Abnormal	ER68			
3	BMS Undervoltage	ER69			Check the BMS communication status or BMS setting parameters.
4	BMS Discharging Temp Abnormal	ER71			status of bivio setting parameters.
5	BMS Communication Failure	ER74			

8 Maintenance

- To prevent frequent over-heat protection of the inverter/charger, which may affect system
 reliability, it is recommended to clean the anti-dust kit once a month. In environments with
 high temperatures and severe dust pollution, it is advisable to clean the anti-dust kit every
 two weeks. It is also recommended to replace the anti-dust kit annually.
- The following inspections and maintenance tasks are recommended at least twice yearly for best performance.
- Make sure no block on airflow around the inverter/charger. Clear up dirt and fragments on the radiator.
- Check all the wired cables to ensure insulation is not damaged for serious solarization, frictional wear, dryness, insects or rats, etc. Repair or replace some wires if necessary.
- Check and confirm that LED or LCD is consistent with the required. Pay attention to any troubleshooting or error indication. Take necessary corrective action.
- Confirm that all the terminals have no corrosion, insulation damage, high temperature, or burnt/discolored sign; tighten terminal screws to the suggested torque.
- · Check for dirt, nesting insects, and corrosion. If so, clear up in time.
- Check and confirm that the lightning arrester is in good condition. Replace a new one in time to avoid damaging the inverter/charger and other equipment.

Risk of electric shock! Turn off all the power before the above operations and follow the corresponding inspections and operations.

9 Specifications

9.1 UC-P20C Series

Model	UC3542-0650P20C	UC5542-1050P20C			
Utility input					
Utility Input Voltage	176VAC to 264VAC (Default), 90VAC to 285VAC (Configurable)				
Utility Input Frequency	45Hz to 65Hz				
Maximum Utility Charging Current	60A	100A			
	Switch Response Time	- Inverter to Utility: 10ms			
Switch Response Time	Switch Response Time - Ut	tility to Inverter (when the load			
	power is higher	than 100W): 20ms			
Utility output					
Utility Output Voltage	176VAC	to 264VAC			
Utility Output Frequency	45Hz	to 65Hz			
Pated Output Payer	100W to 3500W	100W to 5500W			
Rated Output Power	(Default: 2300W)	(Default: 3400W)			
Power Factor	0	.99			
Inverter output					
Inverter Rated Power (@30°C)	3500W	5500W			
3-second Transient Surge Output	7000W	8500W			
Power	700000	0000			
Inverter Output Voltage	220/230VAC±3%				
Inverter Frequency	50/60Hz±0.2%				
Output Voltage Waveform	Pure sine wave				
Load Power Factor	0.2 - 1(VA ≤ Rated output power)				
THDu (Total Harmonic Voltage Distortion)	≤3% (48V resistive load)				
Maximum Load Efficiency	92%	92%			
Maximum Inverter Efficiency	94%	94%			
Maximum Main Load	3500W	5500W			
Maximum Second Load	3500W	5500W			
Main Output Cut-Off Voltage	Equal to "UVW (Under Voltage Warning Voltage)"				
Second Output Cut-Off Voltage	Equal to "LVD (Low Voltage Disconnect Voltage)"				
Dual Output Recovery Voltage	Equal to "LVR (Low Voltage Reconnect Voltage)"				
Solar controller					
PV Maximum Open-circuit	500V (At minimum operation	ng environment temperature)			
Voltage		(At 25℃)			

Model	UC3542-0650P20C	UC5542-1050P20C			
MPPT Voltage Range	85V	to 450V			
Number of MPPTs	1	2			
PV Maximum Input Current	One way, 16A/way	Two ways, 2x16A			
PV Maximum Short-circuit Current	One way, 18A/way	Two ways, 2x18A			
PV Maximum Input Power	4200W	2×3300W			
PV Maximum Charging Current	60A	100A			
MPPT Maximum efficiency	≥9	9.5%			
Battery					
Battery Rated Voltage	48	VDC			
Battery Work Voltage Range	40.8VDC	to 64.0VDC			
Battery Maximum Charging Current	60A	100A			
Others					
	≤0.8A	≤1.1A			
No-load Losses	Test condition: Utility, PV and Load are disconnected, AC				
	output is ON, fan	stops, @48V input			
	≤0.6A	≤0.8A			
Standby Current	Test condition: Utility, PV and Load are disconnected, AC				
	output is OFF, fan stops, @48V input				
Communication with BMS	RS485				
Communication with Portal	R	S485			
Parallel Function	Yes, 12 units for standard	Yes, 12 units for standard			
1 drailor 1 driodon	configuration, up to 16 units	configuration, up to 16 units			
Work Temperature Range	-20°C to +50°C (When the environment temperature exceeds				
	30°C, the actual output power is reduced appropriately)				
Storage Temperature Range	-25℃ to +60℃				
Enclosure	,	NTI-DUST KIT)			
Relative Humidity	< 95% (N.C.)				
Altitude	<4000M (If the altitude exceeds 2000 meters, the actual output				
	power is reduced appropriately)				
Certifications and Standards	IEC 62109-1, IEC 62109-2, IEC 61683, IEC 62368				
Mechanical parameters					
Dimension (Length x Width x Height)	534mm × 300mm × 163mm	590mm × 300mm × 163mm			
Mounting size (Length x Width)	512mm × 245mm	568mm × 245mm			
Mounting hole size	Ф9mm/Ф10mm	Ф9mm/Ф10mm			
Net Weight	12.7Kg	15.5Kg			

Model	UC3522-1250P20C		
Utility input			
	176VAC to 264VAC (Default), 90VAC to 285VAC		
Utility Input Voltage	(Configurable)		
Utility Input Frequency	45Hz to 65Hz		
Maximum Utility Charging	110A		
Current	TIOA		
	Switch Response Time – Inverter to Utility: 10ms		
Switch Response Time	Switch Response Time – Utility to Inverter (when the load		
	power is higher than 100W): 20ms		
Utility output			
Utility Output Voltage	176VAC to 264VAC		
Utility Output Frequency	45Hz to 65Hz		
Rated Output Power	100W to 3500W (Default: 2300W)		
Power Factor	0.99		
Inverter output			
Inverter Rated Power (@30°C)	3500W		
3-second Transient Surge Output	7000W		
Power	70000		
Inverter Output Voltage	220/230VAC±3%		
Inverter Frequency	50/60Hz±0.2%		
Output Voltage Waveform	Pure sine wave		
Load Power Factor	0.2 − 1(VA ≤ Rated output power)		
THDu (Total Harmonic Voltage	≤3% (24V resistive load)		
Distortion)			
Maximum Load Efficiency	92%		
Maximum Inverter Efficiency	94%		
Maximum Main Load	3500W		
Maximum Second Load	3500W		
Main Output Cut-Off Voltage	Equal to "UVW (Under Voltage Warning Voltage)"		
Second Output Cut-Off Voltage	Equal to "LVD (Low Voltage Disconnect Voltage)"		
Dual Output Recovery Voltage	Equal to "LVR (Low Voltage Reconnect Voltage)"		
Solar controller			
PV Maximum Open-circuit	500V (At minimum operating environment temperature)		
Voltage	440V (At 25°C)		
MPPT Voltage Range	85V to 450V		
Number of MPPTs	1		
PV Maximum Input Current	One way, 16A/way		
PV Maximum Short-circuit	0		
Current	One way, 18A/way		
PV Maximum Input Power	4200W		

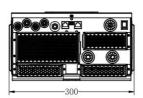
Model	UC3522-1250P20C		
PV Maximum Charging Current	120A		
MPPT Maximum efficiency	≥99.5%		
Battery	-00.07		
Battery Rated Voltage	24VDC		
Battery Work Voltage Range	20.4VDC to 32.0VDC		
Battery Maximum Charging			
Current	120A		
Others			
No-load Losses	≤1.5A		
	Test condition: Utility, PV and Load are disconnected, AC		
	output is ON, fan stops, @24V input		
Standby Current	≤1.1A		
	Test condition: Utility, PV and Load are disconnected, AC		
	output is OFF, fan stops, @24V input		
Communication with BMS	RS485		
Communication with Portal	RS485		
Parallel Function	Yes, 12 units for standard configuration, up to 16 units		
Work Tomporature Dange	-20°C to +50°C (When the environment temperature exceeds		
Work Temperature Range	30°C, the actual output power is reduced appropriately)		
Storage Temperature Range	-25°C to +60°C		
Enclosure	IP20 (With ANTI-DUST KIT)		
Relative Humidity	< 95% (N.C.)		
Altitude	<4000M (If the altitude exceeds 2000 meters, the actual output		
Ailitude	power is reduced appropriately)		
Certifications and Standards	IEC 62109-1, IEC 62109-2, IEC 61683, IEC 62368		
Mechanical parameters			
Dimension (Length x Width x Height)	590mm × 300mm × 163mm		
Mounting size (Length x Width)	568mm × 245mm		
Mounting hole size	Ф9mm/Ф10mm		
Net Weight	13.8Kg		

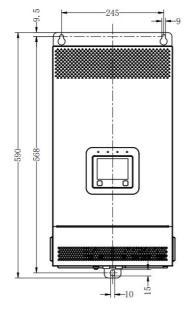
Model	UC6042-1250P20C	
Utility input		
LIEB - Louis A Vallania	176VAC to 264VAC (Default), 90VAC to 285VAC	
Utility Input Voltage	(Configurable)	
Utility Input Frequency	45Hz to 65Hz	
Maximum Utility Charging	100A	
Current	100/1	
	Switch Response Time – Inverter to Utility: 10ms	
Switch Response Time	Switch Response Time – Utility to Inverter (when the load	
	power is higher than 100W): 20ms	
Utility output		
Utility Output Voltage	176VAC to 264VAC	
Utility Output Frequency	45Hz to 65Hz	
Rated Output Power	100W to 6000W (Default: 4000W)	
Power Factor	0.99	
Inverter output		
Inverter Rated Power (@30°C)	6000W	
3-second Transient Surge Output	12000W	
Power	12000	
Inverter Output Voltage	220/230VAC±3%	
Inverter Frequency	50/60Hz±0.2%	
Output Voltage Waveform	Pure sine wave	
Load Power Factor	0.2 - 1(VA ≤ Rated output power)	
THDu (Total Harmonic Voltage	≤3% (24V resistive load)	
Distortion)	2070 (24v řesistive loau)	
Maximum Load Efficiency	92%	
Maximum Inverter Efficiency	94%	
Maximum Main Load	6000W	
Maximum Second Load	6000W	
Main Output Cut-Off Voltage	Equal to "UVW (Under Voltage Warning Voltage)"	
Second Output Cut-Off Voltage	Equal to "LVD (Low Voltage Disconnect Voltage)"	
Dual Output Recovery Voltage	Equal to "LVR (Low Voltage Reconnect Voltage)"	
Solar controller		
PV Maximum Open-circuit	500V (At minimum operating environment temperature)	
Voltage	440V (At 25°C)	
MPPT Voltage Range	85V to 450V	
Number of MPPTs	2	
PV Maximum Input Current	2 ways, 2*16A	
PV Maximum Short-circuit		
Current	2 ways, 2*16A	
PV Maximum Input Power	8000W	

Model	UC6042-1250P20C	
PV Maximum Charging Current	120A	
MPPT Maximum efficiency	≥99.5%	
Battery		
Battery Rated Voltage	48VDC	
Battery Work Voltage Range	40.8VDC to 64.0VDC	
Battery Maximum Charging	4004	
Current	120A	
Others		
	≤1.1A	
No-load Losses	Test condition: Utility, PV and Load are disconnected, AC	
	output is ON, fan stops, @48V input	
	≤0.8A	
Standby Current	Test condition: Utility, PV and Load are disconnected, AC	
	output is OFF, fan stops, @48V input	
Communication with BMS	RS485	
Communication with Portal RS485		
Parallel Function	Yes, 12 units in standard, 16 units at most	
Work Temperature Range	-20°C to +50°C (When the environment temperature exceeds	
Work remperature Kange	30°C, the actual output power is reduced appropriately)	
Storage Temperature Range	-25℃ to +60℃	
Enclosure	IP20 (With ANTI-DUST KIT)	
Relative Humidity	< 95% (N.C.)	
Altitude	<4000M (If the altitude exceeds 2000 meters, the actual output	
Allitude	power is reduced appropriately)	
Certifications and Standards	IEC 62109-1, IEC 62109-2, IEC 61683	
Mechanical parameters		
Dimension (Length x Width x Height)	590mm × 300mm × 163mm	
Mounting size (Length x Width)	568mm × 245mm	
Mounting hole size	Ф9mm/Ф10mm	
Net Weight	15Kg	

9.2 UCP-P20C Series

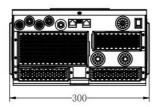
Model	UCP3542-0650P20C	UCP5542-1050P20C			
Utility input	Utility input				
Utility Input Voltage	176VAC to 264VAC (Default), 90VAC to 285VAC (Configurable)				
Utility Input Frequency	45Hz	z to 65Hz			
Maximum Utility Charging Current	60A	100A			
	Switch Response Time	e – Inverter to Utility: 10ms			
Switch Response Time	Switch Response Time – L	Itility to Inverter (when the load			
	power is higher	than 100W): 20ms			
Utility output					
Utility Output Voltage	176VAC	to 264VAC			
Utility Output Frequency	45Hz	z to 65Hz			
Rated Output Power	100W to 3500W	100W to 5500W			
rtated Odiput i owei	(Default: 2300W)	(Default: 3400W)			
Power Factor		0.99			
Inverter output					
Inverter Rated Power (@30°C)	3500W	5500W			
3-second Transient Surge Output	7000W	8500W			
Power	7000	030000			
Inverter Output Voltage	220/230VAC±3%				
Inverter Frequency	50/60Hz±0.2%				
Output Voltage Waveform	Pure sine wave				
Load Power Factor	0.2 - 1(VA ≤ R	ated output power)			
THDu (Total Harmonic Voltage Distortion)	≤3% (48V resistive load)				
Maximum Load Efficiency	92%	92%			
Maximum Inverter Efficiency	94%	94%			
Maximum Main Load	3500W	5500W			
Maximum Second Load	3500W	5500W			
Main Output Cut-Off Voltage	Equal to "UVW (Under Voltage Warning Voltage)"				
Second Output Cut-Off Voltage	Equal to "LVD (Low Voltage Disconnect Voltage)"				
Dual Output Recovery Voltage	Equal to "LVR (Low Voltage Reconnect Voltage)"				
Solar controller					
PV Maximum Open-circuit	500V (At minimum operating environment temperature)				
Voltage	440V (At 25°C)				
MPPT Voltage Range		to 450V			
Number of MPPTs	1	2			
PV Maximum Input Current	One way, 20A/way	Two ways, 2x20A			

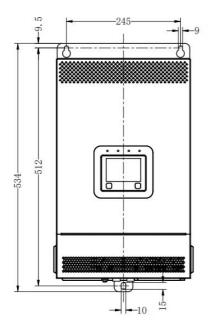

Model	UCP3542-0650P20C	UCP5542-1050P20C	
PV Maximum Short-circuit	One way 224/way	T	
Current	One way, 22A/way	Two ways, 2x22A	
PV Maximum Input Power	4200W	2×3300W	
PV Maximum Charging Current	60A	100A	
MPPT Maximum efficiency	≥9	9.5%	
Battery			
Battery Rated Voltage	48	BVDC	
Battery Work Voltage Range	40.8VDC	to 64.0VDC	
Battery Maximum Charging	60A	100A	
Current	OUA	100A	
Others			
	≤0.8A	≤1.1A	
No-load Losses	Test condition: Utility, PV a	nd Load are disconnected, AC	
	output is ON, far	n stops, @48V input	
	≤0.6A	≤0.8A	
Standby Current	Test condition: Utility, PV and Load are disconnected, AC		
	output is OFF, fan stops, @48V input		
Communication with BMS	RS485		
Communication with Portal	RS485		
Parallel Function	Yes, 12 units for standard	Yes, 12 units for standard	
Faranei Function	configuration, up to 16 units configuration, up to 16 ur		
Work Temperature Range	-20°C to +50°C (When the environment temperature exceeds		
work remperature range	30°C, the actual output power is reduced appropriately)		
Storage Temperature Range	-25℃	to +60°C	
Enclosure	IP20 (With ANTI-DUST KIT)		
Relative Humidity	< 95% (N.C.)		
Altitude	<4000M (If the altitude exceeds 2000 meters, the actual output		
Ailitude	power is reduced appropriately)		
Certifications and Standards	IEC 62109-1, IEC 62109-2, IEC 61683, IEC 62368		
Mechanical parameters			
Dimension (Length x Width x	534mm × 300mm ×	590mm × 300mm × 163mm	
Height)	163mm	mmeor - minious - minious	
Mounting size (Length x Width)	512mm × 245mm	568mm × 245mm	
Mounting hole size	Ф9mm/Ф10mm	Ф9mm/Ф10mm	
Net Weight	12.7Kg 15.5Kg		

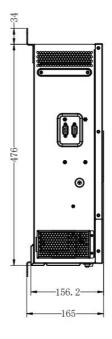

Model	UCP3522-1250P20C
Utility input	
	176VAC to 264VAC (Default), 90VAC to 285VAC
Utility Input Voltage	(Configurable)
Utility Input Frequency	45Hz to 65Hz
Maximum Utility Charging Current	110A
	Switch Response Time – Inverter to Utility: 10ms
Switch Response Time	Switch Response Time – Utility to Inverter (when the load
	power is higher than 100W): 20ms
Utility output	
Utility Output Voltage	176VAC to 264VAC
Utility Output Frequency	45Hz to 65Hz
Rated Output Power	100W to 3500W (Default: 2300W)
Power Factor	0.99
Inverter output	
Inverter Rated Power (@30°C)	3500W
3-second Transient Surge Output	700014
Power	7000W
Inverter Output Voltage	220/230VAC±3%
Inverter Frequency	50/60Hz±0.2%
Output Voltage Waveform	Pure sine wave
Load Power Factor	0.2 - 1(VA ≤ Rated output power)
THDu (Total Harmonic Voltage	(20/ (24)/ mariative land)
Distortion)	≤3% (24V resistive load)
Maximum Load Efficiency	92%
Maximum Inverter Efficiency	94%
Maximum Main Load	3500W
Maximum Second Load	3500W
Main Output Cut-Off Voltage	Equal to "UVW (Under Voltage Warning Voltage)"
Second Output Cut-Off Voltage	Equal to "LVD (Low Voltage Disconnect Voltage)"
Dual Output Recovery Voltage	Equal to "LVR (Low Voltage Reconnect Voltage)"
Solar controller	
DV Marianum On an ainsuit Valle	500V (At minimum operating environment temperature)
PV Maximum Open-circuit Voltage	440V (At 25°C)
MPPT Voltage Range	85V to 450V
Number of MPPTs	1
PV Maximum Input Current	One way, 20A/way
PV Maximum Short-circuit Current	One way, 22A/way
PV Maximum Input Power	4200W
PV Maximum Charging Current	120A
MPPT Maximum efficiency	≥99.5%

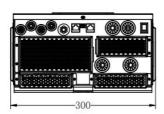
Model	UCP3522-1250P20C		
Battery			
Battery Rated Voltage	24VDC		
Battery Work Voltage Range	20.4VDC to 32.0VDC		
Battery Maximum Charging Current	120A		
Others			
	≤1.5A		
No-load Losses	Test condition: Utility, PV and Load are disconnected, AC output is ON, fan stops, @24V input		
	≤1.1A		
Standby Current	Test condition: Utility, PV and Load are disconnected, AC output is OFF, fan stops, @24V input		
Communication with BMS	RS485		
Communication with Portal	RS485		
Parallel Function	Yes, 12 units for standard configuration, up to 16 units		
Work Temperature Range	-20°C to +50°C (When the environment temperature exceeds 30°C, the actual output power is reduced appropriately)		
Storage Temperature Range	-25°C to +60°C		
Enclosure	IP20 (With ANTI-DUST KIT)		
Relative Humidity	< 95% (N.C.)		
Altitude	<4000M (If the altitude exceeds 2000 meters, the actual output power is reduced appropriately)		
Certifications and Standards	IEC 62109-1, IEC 62109-2, IEC 61683, IEC 62368		
Mechanical parameters	<u> </u>		
Dimension(Length x Width x Height)	590mm × 300mm × 163mm		
Mounting size (Length x Width)	568mm × 245mm		
Mounting hole size	Ф9mm/Ф10mm		
Net Weight	13.8Kg		

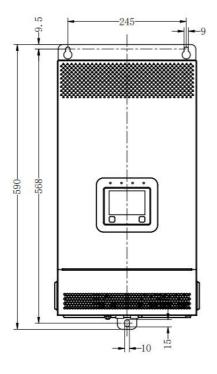
10 Dimensions

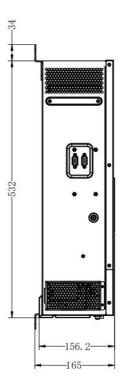

Model: UC3522-1250P20C / UCP3522-1250P20C

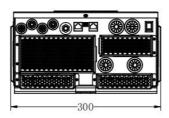


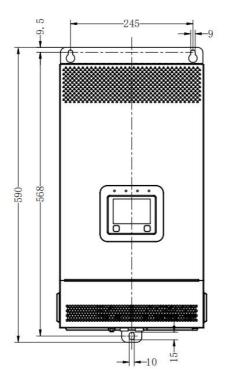





Unit: mm







11 Appendix

11.1 Appendix1 Abbreviations index

LCD	Abbreviations	Full name in English
	OVP	Over Voltage Protection Voltage
	OVPR	Over Voltage Protection Reconnect Voltage
Solar Setting	UVP	Under Voltage Protection Voltage
Parameter	UVPR	Under Voltage Protection Reconnect Voltage
	OTP	Over Temperature Protection Temperature
	OTPR	Over Temperature Protection Recovery Temperature
	OVD	Over Voltage Disconnect Voltage
	CLV	Charging Voltage Limit Voltage
	OVR	Over Voltage Reconnect Voltage
	ECV	Equalize Charging Voltage
	BCV	Boost Charging Voltage
Walter and Occupant	FCV	Float Charging Voltage
Voltage Control	BVR	Boost Voltage Reconnect Voltage
Strategy	LVR	Low Voltage Reconnect Voltage
	UVWR	Under Voltage Warning Recovery Voltage
	UVW	Under Voltage Warning Voltage
	LVD	Low Voltage Disconnect Voltage
	DLV	Discharging Voltage Limit Voltage
	AUX OFF	Auxiliary module OFF voltage
	AUX ON	Auxiliary module ON voltage
	FCP	Full Charging Protection SOC
	FCPR	Full Charging Protection Recovery SOC
	LPAR	Low Power Alarm Recovery SOC
SOC Control	LPA	Low Power Alarm SOC
Strategy	DPR	Discharging Protection Recovery SOC
	DP	Discharging Protection SOC
	UAC ON	Utility Charging ON SOC
	UAC OFF	Utility Charging OFF SOC
	Set SOC	Set SOC

	UOD	Utility Over Voltage Disconnect Voltage
	UOR	Utility Over Voltage Reconnect Voltage
Grid Setting	ULVD	Utility Low Voltage Disconnect Voltage
Parameter	ULVR	Utility Low Voltage Reconnect Voltage
	UOF	Utility Over Frequency Disconnect Frequency
	UFD	Utility Under Frequency Disconnect Frequency
	INVOVL	Inverter Output Voltage Level
	INVOFR	Inverter Output Frequency Range
	Load CL	Load Current Limit
Load Setting	INVOP	Inverter Over Voltage Protection Voltage
Parameter	INVOPR	Inverter Over Voltage Protection Recovery Voltage
	TempUL	Temperature Upper Limit
	TempULR	Temperature Upper Limit Recovery
	Status	Battery Status
	BDCap	Battery Design Capacity
	ВТуре	Battery Type
	BRV	Battery Voltage
Battery Basic	LBACC	Local Battery Available Charging Current
Properties	LBADC	Local Battery Available Discharging Current
	BECT	Battery Equalize Charging Time
	BECD	Battery Equalize Charging Date
	BBCT	Battery Boost Charging Time
	BTCC	Battery Temperature Compensation Coefficient
	Li PROT	Lithium Battery Protection
	LTSChrg	Low Temperature Stop Charging Temperature
	LTSDischrg	Low Temperature Stop Discharging Temperature
	BATT OTP	Battery Over Temperature Protection
	BATT OTPR	Battery Over Temperature Protection Recovery
Advanced	Chrg	Charging
Battery	Dischrg	Discharging
Properties	PCUP	Phase Current Unbalance Protection
	INVPSet	Inverter Phase Setting
	UCD	Unbalanced Current Difference
	Grid Feeding	Grid Feeding Enable
	PWRSave	Power Saving
	Feeding Power	Maximum Grid Feeding Power
	PWRSDT	Power Saving Detection Time

	BACC	Battery Available Charging Current
	BADC	Battery Available Discharging Current
	UACC	Utility Available Charging Current
	CMode	Charging Mode
	DMode	Discharge Mode
Charge and	ACmode	AC Input Mode
Discharge	PVMode	PV Mode
Management	BCCMode	Battery Charging Control Mode
	BMSProt	BMS Protocol
	BMS	BMS Enable
	BMSVolt	BMS Voltage Control
	BMSCurr	BMS Current Control
	BMSFail	BMS Fail Action
	ВСМ	Battery Connection Method
	LCD BRT	LCD Brightness
	TODelay	Idle Timeout Delay
	LCDSBRT	Standby LCD Brightness
	SOT	Screen Off Time
Local Parameters	Com ID	Communication ID
	Com BPS	Communication Baud Rate
	DCT ON	Dry Contract ON Voltage
	DCT OFF	Dry Contract OFF Voltage
	Switch BMS	Switch BMS
	HRI	History Record Interval
	Wireless	Wireless
	RTU Power	RTU Power
	Screen Timeout	Screen Timeout
	Parameter Reset	Parameter Reset
	Low Power Mode	Low Power Mode
Others	Manual Equalizer	Manual Equalizer
	DC Source Characteristic	DC Source Characteristic
	Initializing Records	Initializing Records
	Clear Statistical Power	Clear Statistical Power

11.2 Appendix 2 Battery state instruction

On the home page, click the battery icon
 to enter the battery real-time data


interface.

2. Touch the to enter the battery state interface.

- 3. The first page shows the "Battery State."
- Click **Down** button to shows the "Cell State" on second page.

- Click *Down* button to shows the "Cell State And Other" on third pages.
- 6. Click **Down** button to shows the "Other" on forth pages.

The detailed data of each interface is as follows:

LCD	English display	Description
	Charging protection	Green means this state has not occurred, red means this state has occurred. After showing red, the inverter/charger turns off charging.
	Discharge protection	Green means this state has not occurred, red means this state has occurred. After showing red, the inverter/charger turns off discharging.
	Communication Error	The communication between BMS-Link and lithium battery BMS fails (such as wrong protocol selection, mismatched communication cables, etc.). Green means this state has not occurred, red means this state has occurred. After showing red, the inverter/charger turns off charging and discharging.
Battery State	State Other protection State Other protection State Other protection State has occurred. After showing restruction turns off the charging and discharging Green means this state has not occurred. After showing restructions overtemperature turns off charging. Green means this state has not occurred. After showing restructions of the state has not occurred.	Green means this state has not occurred, red means this state has occurred. After showing red, the inverter/charger turns off the charging and discharging.
		Green means this state has not occurred, red means this state has occurred. After showing red, the inverter/charger turns off charging.
		Green means this state has not occurred, red means this state has occurred. After showing red, the inverter/charger turns off discharging.
	Full of requests	Green means this state has not occurred, red means this
	Forced charge	state has occurred.
	Discharge Enable	Green means discharging is enabled. Red means discharging is disabled. After showing red, the inverter/charger turns off discharging.
	Charge Enable	Green means charging is enabled. Red means charging is disabled. After showing red, the inverter/charger turns off charging.

LCD	English display	Description
Cell State	1 Normal to 14 Normal	If it is detected that the current single battery cell is normal or there is no battery cell, it will display green; if the current battery cell is abnormal, the display will
Cell State And Other	15 Normal to 16 Normal	turn red. The abnormal status of a single battery cell includes: Undervoltage alarm, Overvoltage alarm, Undervoltage proterct, Overvoltage protect, and Cell detection. After reading the undervoltage alarm or protection of the single cell, the inverter/charger turns off discharging. After reading the overvoltage alarm or protection of the single cell, the inverter/charger turns off charging.
	MOS Temperature State	Normal display is green, abnormal display is red.
	Environment Temper	Abnormal status includes: High temperature alarm,
	State	Low temperature alarm, High temperature protect,
	Equalization Temper	Low temperature protect, NTC fault.
	State	The inverter/charger turns off charging and
	Cell Temperature State	discharging.
Pack Voltage State Other Pack Current State	Normal display is green, abnormal display is red. Abnormal status includes: Undervoltage alarm, Overvoltage alarm, Undervoltage protect, Overvoltage protect. After reading the BMS under-voltage alarm or protection, the inverter/charger turns off discharging. After reading the BMS over-voltage alarm or protection, the inverter/charger turns off charging.	
	Pack Current State	Normal display is green, abnormal display is red. Abnormal status includes: Overrelease alarm, Overcharge alarm, Overdischarge protection, Overcharge protection. After reading the BMS over-discharge alarm or protection, the inverter/charger turns off discharging. After reading the BMS overcharge alarm or protection, the inverter/charger turns off charging.

Any changes without prior notice!

Version number: V1.3

HUIZHOU EPEVER TECHNOLOGY CO., LTD.

Tel: +86-752-3889706

E-mail: info@epever.com

Website: www.epever.com